Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Itog_Ekonometr.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
604.77 Кб
Скачать

19.Схема Гаусса–Маркова (на примере модели Оукена).

Модель Оукена:

t=1,2,...

где wt - темп прироста безработицы в году t,

yt - темп роста ВВП

Пусть в рамках исследуемой модели величины связаны следующим образом:

, причём

Она называется системой уравнений наблюдения объекта в рамках исследуемой линейной модели, или иначе – схемой Гаусса-Маркова ( ). Вот компактная запись этой схемы

где - вектор известных значений эндогенной переменной yt модели;

- вектор неизвестных значений случайных возмущений ut;

- матрица известных значений предопределенной переменной wt модели, расширенная столбцом единиц;

– вектор неизвестных коэффициентов уравнения модели.

Оценку вектора обозначим . Тот факт, что эта оценка вычисляется по выборочным данным при помощи некоторой статистической процедуры, отразим:

где f(· , ·) – символ процедуры.

Данная процедура именуется линейной относительно вектора значений эндогенной переменной yt, если: .

, где матрица коэффициентов, зависящих только от выборочных значений W предопределенной переменной wt

20.Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные статистические процедуры. Требования к наилучшей статистической процедуре.

Пусть имеется выборка

значений переменных x и y модели

Данная выборка получена на этапе наблюдения и предназначена для оценивания параметров модели

В рамках данной модели величины (*) связаны следующей СЛОУ:

Она называется системой уравнений наблюдения объекта в рамках исследуемой линейной модели, или иначе – схемой Гаусса-Маркова. Вот компактная запись этой схемы .

где - вектор известных значений эндогенной переменной yt модели;

- вектор неизвестных значений случайных возмущений ut;

- матрица известных значений предопределенной переменной x исходной модели, расширенная столбцом единиц (при наличии a0);

Наконец, – вектор неизвестных коэффициентов уравнения модели.

Оценку вектора обозначим . Тот факт, что эта оценка вычисляется по выборочным данным при помощи некоторой статистической процедуры, отразим:

где f(· , ·) – символ процедуры.

Данная процедура именуется линейной относительно вектора значений эндогенной переменной yt, если: .

, где матрица коэффициентов, зависящих только от выборочных значений X предопределенной переменной хt.

Класс таких всевозможных линейных процедур оценивания по исходной выборке вектора обозначим символом F.

Наилучшая процедура f*(· , ·) из выбранного класса процедур F должна генерировать оценку , которая обладает одновременно двумя свойствами: ожидаемая оценка параметра совпадает с истинным значением

, i=0,1 (эффективности).

21. Теорема Гаусса-Маркова: выражение вектора оценок коэффициентов и доказательство их несмещённости.

Если справедливы все предпосылки теорему Гаусса-Маркова, тогда имеет место утверждение А: – оптимальная линейная процедура оценивания коэффициентов функции регрессии. Докажем, что имеет место свойство несмещенности оценок коэффициентов, то есть .

Доказательство: Шаг 1. .

Шаг 2. , ч.т.д.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]