
- •1. Назначение экономико-математических моделей (эмм). Два принципа их спецификации. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •2. Типы переменных в экономических моделях. Структурная и приведённая форма модели (на примере макромодели). Компактная запись.
- •4. Спецификация и преобразование к приведённой форме эконометрических моделей. Эконометрическая модель Самуэльсона–Хикса делового цикла экономики. Компактная запись.
- •Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации функции линейн.
- •Случайная переменная и закон её распределения. Нормальный закон распределения и его параметры.
- •Случайная переменная и закон её распределения. Распределение хи-квадрат.
- •Случайная переменная и закон её распределения. Распределение Стьюдента, Квантиль, t крит уровня и её расчёт в Excel.
- •Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
- •Свойства
- •Случайная переменная и закон её распределения. Закон распределения Фишера. Квантиль, f крит уровня и её расчёт в Excel.
- •Случайный вектор и его основные количественные характеристики (на примере вектора левых частей схемы Гаусса – Маркова при гомоскедастичном неавтокоррелированном остатке).
- •Случайный вектор и факторизация его ковариационной матрицы. Случайный вектор случайных остатков в схеме Гаусса – Маркова при гетероскедастичном неавтокоррелированном остатке.
- •Временной ряд и его структура (На примере ввп России).
- •Модели тренда временного ряда.
- •17. Моделирование сезонной составляющей при помощи фиктивных переменных.
- •18. Регрессионная зависимость случайных переменных. Функция регрессии, стандартные модели функции регрессии.
- •19.Схема Гаусса–Маркова (на примере модели Оукена).
- •20.Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные статистические процедуры. Требования к наилучшей статистической процедуре.
- •21. Теорема Гаусса-Маркова: выражение вектора оценок коэффициентов и доказательство их несмещённости.
- •22. Теорема Гаусса-Маркова: выражение Cov( , ) и его обоснование.
- •24. Теорема Гаусса-Маркова: выражение .
- •25. Взвешенный метод наименьших квадратов (вмнк). Простейшая модель гетероскедастичности случайного остатка. Практическая реализация вмнк.
- •27. Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов (мнк) линейной модели парной регрессии (на примере модели Оукена).
- •28. Ковариационная матрица оценок коэффициентов линейной модели парной регрессии: явные выражения .
- •29.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: независимость случайных векторов
- •30.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределение оценки .
- •31. Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределения дроби .
- •32. Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).
- •34. Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).
- •35. Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.
- •Тест Голдфелда-Квандта гомоскедастичности случайного остатка в лммр
- •37.Тест Дарбина–Уотсона отсутствия автокорреляции случайного остатка в лммр.
- •38.Коэффициент детерминации как мерило качества спецификации эконометрической модели (на примере модели Оукена). Скорректированный коэффициент детерминации.
- •39. Связь коэффициента детерминации с коэффициентом корреляции эндогенной переменной и её оценки (на примере модели Оукена).
- •41. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной (на примере модели Оукена).
- •42.Процедура проверки адекватности оценённой линейной эконометрической модели (на примере модели Оукена).
- •43.Последствия, симптомы и методика устранения ошибки спецификации эконометрической модели, состоящей в неверном выборе функции регрессии.
- •44.Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей во включении незначимой объясняющей переменной.
- •45. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в пропуске значимой объясняющей переменной.
- •46. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в непостоянстве значений её параметров в области изменения объясняющих переменных; тест Чоу.
- •47. Основные характеристики временного ряда.
- •48. Стационарный временной ряд. Белый шум.
- •49.Оценка характеристик стационарного временного ряда.
- •Частная автокорреляционная функция стационарного временного ряда и алгоритм её оценивания.
- •Модель ar(p) и её идентификация.
- •Модель ma(q) и её идентификация.
- •Оптимальный линейный алгоритм прогнозирования уровней стационарного временного ряда.
- •Модели нестационарных временных рядов. Идентификация модели тренда.
- •Оценивание линейной модели с автокоррелированным остатком ar(1) алгоритмом Хильдретта – Лу.
- •Проблема мультиколлинеарности, типы и симптомы мультиколлинеарности. Методика отбора регрессоров в линейной модели в ситуации мультиколлинеарности.
- •Модели с лаговыми переменными: авторегрессионная модель и модель распределённых лагов; проблемы оценивания этих моделей.
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса-предложения блага).
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
- •60. Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка)
- •61. Критерий идентифицируемости поведенческого уравнения модели слоу (правило ранга)
- •62. Понятие инструментальных переменных. Оценивание параметров структурной формы двухшаговым м-ом наименьших квадратов на примере простейшей макромодели Кейнса
- •63. Теорема Слуцкого и оценивание параметров структурной формы косвенным методом наименьших квадратов (кмнк) – на примере простейшей макромодели Кейнса.
Модели тренда временного ряда.
В общем случае в структуре временного ряда можно выделить три составляющих:
Тренд (тенденция);
Сезонная составляющая;
Случайная составляющая.
Отметим простейшие модели тренда:
Линейная функция времени
Квадратная парабола времени
Экспоненциальная функция времени
_________________________________________________________________________
yt - некоторый временной ряд (датированная экономическая переменная).
Модели временного ряда предназначены для объяснения (прогноза) уровня ряда, yt фактором времени, t. Это значит, что экзогенной переменной модели временного ряда служит целочисленная переменная t, а эндогенной переменной является уровень ряда, yt, представленный в виде некоторой функции независимой переменной t. Переменная yt служит количественной характеристикой некоторого экономического объекта, поэтому изменение этой переменной во времени определяется факторами (движущими силами), оказывающими воздействие на данный объект с ходом времени, которые можно классифицировать следующим образом:
1) «вековые» воздействия, результирующее влияние которых не меняется;
2) циклические воздействия, влияние которых совершает законченный круг в течение некоторого фиксированного временного промежутка;
3) случайные воздействия, результирующее влияние которых с высокой скоростью меняет направление и интенсивность, индуцируя нерегулярную составляющую в .
1) Обозначим символом Tt – некоторую монотонную функцию переменной t; в модели временного ряда эта функция будет играть роль тенденции. часто используемые типы тенденции (тренда). Вот пять простейших моделей:
Tt = a0+a1∙t, Tt =a0∙ta1, Tt =a0+a1∙ln(t0+t), Tt=a0∙exp(a1∙t) , Tt=a0∙exp(-ta1).
17. Моделирование сезонной составляющей при помощи фиктивных переменных.
Сезонная составляющая - некоторая периодическая функция времени с периодом в один год.
Рассмотрим популярную в эконометрике периодическую функцию дискретного времени с периодом τ.
Уравнение этой функции: S(t+τ)=S(t)
S(t)=
(t)+
(t)+…+
(t)
(*)
,…
-
коэффициенты
(t),…,
(t)-функции
времени, которые в данной ситуации имеют
смысл индикаторов сезонов (конкретно
кварталов) и служат примером фиктивных
переменных (переменные, значения которых
выбираются исследователями по
договоренности)
Поясним смысл этих переменных на примере квартальных данных(когда τ=4).
d1={1- для первого квартала, 0- для других кварталов};
d2={1- для второго квартала, 0 - для других кварталов};
d3={1- для третьего квартала, 0 - для других кварталов}
При помощи модели (*) можно моделировать не только сезонную составляющую, но и влияние на соответствующую эндогенную переменную качественного фактора, который способен находиться в одном из τ состояний. Состояние этого фактора, при котором все фиктивные переменные равны 0 называется базовым.(В нашем примере- это четвертый квартал года )
18. Регрессионная зависимость случайных переменных. Функция регрессии, стандартные модели функции регрессии.
Модели, в состав которых входят случайные возмущения, отражающие воздействие на эндогенные переменные неучтенных факторов принято называть эконометрическими (регрессионными).
В общем случае структурная форма эконометрической модели имеет вид:
F(
,
)=
Структурная форма:
А
=
Приведенная форма модели в общем случае имеет вид:
Этапы построения эконометрических моделей:
1.Спецификация модели
2.Сбор и проверка статистической информации
3.Оценивание модели
4.Проверка адекватности
ЛММР
Объясняющие
переменные
в общем случае не зависят от случайного
остатка
.
Данная модель является базовой
моделью эконометрики, потому
что к такому виду может быть трансформирована
практически любая эконометрическая
модель в виде изолированного уравнения.