
- •1. Назначение экономико-математических моделей (эмм). Два принципа их спецификации. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •2. Типы переменных в экономических моделях. Структурная и приведённая форма модели (на примере макромодели). Компактная запись.
- •4. Спецификация и преобразование к приведённой форме эконометрических моделей. Эконометрическая модель Самуэльсона–Хикса делового цикла экономики. Компактная запись.
- •Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации функции линейн.
- •Случайная переменная и закон её распределения. Нормальный закон распределения и его параметры.
- •Случайная переменная и закон её распределения. Распределение хи-квадрат.
- •Случайная переменная и закон её распределения. Распределение Стьюдента, Квантиль, t крит уровня и её расчёт в Excel.
- •Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
- •Свойства
- •Случайная переменная и закон её распределения. Закон распределения Фишера. Квантиль, f крит уровня и её расчёт в Excel.
- •Случайный вектор и его основные количественные характеристики (на примере вектора левых частей схемы Гаусса – Маркова при гомоскедастичном неавтокоррелированном остатке).
- •Случайный вектор и факторизация его ковариационной матрицы. Случайный вектор случайных остатков в схеме Гаусса – Маркова при гетероскедастичном неавтокоррелированном остатке.
- •Временной ряд и его структура (На примере ввп России).
- •Модели тренда временного ряда.
- •17. Моделирование сезонной составляющей при помощи фиктивных переменных.
- •18. Регрессионная зависимость случайных переменных. Функция регрессии, стандартные модели функции регрессии.
- •19.Схема Гаусса–Маркова (на примере модели Оукена).
- •20.Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные статистические процедуры. Требования к наилучшей статистической процедуре.
- •21. Теорема Гаусса-Маркова: выражение вектора оценок коэффициентов и доказательство их несмещённости.
- •22. Теорема Гаусса-Маркова: выражение Cov( , ) и его обоснование.
- •24. Теорема Гаусса-Маркова: выражение .
- •25. Взвешенный метод наименьших квадратов (вмнк). Простейшая модель гетероскедастичности случайного остатка. Практическая реализация вмнк.
- •27. Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов (мнк) линейной модели парной регрессии (на примере модели Оукена).
- •28. Ковариационная матрица оценок коэффициентов линейной модели парной регрессии: явные выражения .
- •29.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: независимость случайных векторов
- •30.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределение оценки .
- •31. Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределения дроби .
- •32. Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).
- •34. Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).
- •35. Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.
- •Тест Голдфелда-Квандта гомоскедастичности случайного остатка в лммр
- •37.Тест Дарбина–Уотсона отсутствия автокорреляции случайного остатка в лммр.
- •38.Коэффициент детерминации как мерило качества спецификации эконометрической модели (на примере модели Оукена). Скорректированный коэффициент детерминации.
- •39. Связь коэффициента детерминации с коэффициентом корреляции эндогенной переменной и её оценки (на примере модели Оукена).
- •41. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной (на примере модели Оукена).
- •42.Процедура проверки адекватности оценённой линейной эконометрической модели (на примере модели Оукена).
- •43.Последствия, симптомы и методика устранения ошибки спецификации эконометрической модели, состоящей в неверном выборе функции регрессии.
- •44.Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей во включении незначимой объясняющей переменной.
- •45. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в пропуске значимой объясняющей переменной.
- •46. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в непостоянстве значений её параметров в области изменения объясняющих переменных; тест Чоу.
- •47. Основные характеристики временного ряда.
- •48. Стационарный временной ряд. Белый шум.
- •49.Оценка характеристик стационарного временного ряда.
- •Частная автокорреляционная функция стационарного временного ряда и алгоритм её оценивания.
- •Модель ar(p) и её идентификация.
- •Модель ma(q) и её идентификация.
- •Оптимальный линейный алгоритм прогнозирования уровней стационарного временного ряда.
- •Модели нестационарных временных рядов. Идентификация модели тренда.
- •Оценивание линейной модели с автокоррелированным остатком ar(1) алгоритмом Хильдретта – Лу.
- •Проблема мультиколлинеарности, типы и симптомы мультиколлинеарности. Методика отбора регрессоров в линейной модели в ситуации мультиколлинеарности.
- •Модели с лаговыми переменными: авторегрессионная модель и модель распределённых лагов; проблемы оценивания этих моделей.
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса-предложения блага).
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
- •60. Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка)
- •61. Критерий идентифицируемости поведенческого уравнения модели слоу (правило ранга)
- •62. Понятие инструментальных переменных. Оценивание параметров структурной формы двухшаговым м-ом наименьших квадратов на примере простейшей макромодели Кейнса
- •63. Теорема Слуцкого и оценивание параметров структурной формы косвенным методом наименьших квадратов (кмнк) – на примере простейшей макромодели Кейнса.
Случайная переменная и закон её распределения. Распределение хи-квадрат.
Переменная величина называется случайной, если свои возможные значения она принимает в рез-те некоторого опыта, и до его завершения не возможно предсказать какое точно значение она примет.
З-н распределения дискретной случайной переменной- функция скалярного аргумента q с областью определения , характеризующая возможность появления в опыте значений q случайной переменной x.
З-н
распределения дискретной случайной
переменной называется вероятностной
функцией, значение которой равны
вероятностям появления в опыте возможного
значения сл. переменной:
Закон распределения хи-квадрат случайной величины имеет вид(ХИ2РАСП,ХИ2ОБР):
,
,
где n-натуральное
число( параметр закона).
Случайная переменная и закон её распределения. Распределение Стьюдента, Квантиль, t крит уровня и её расчёт в Excel.
Опр1. Случайной называют переменную которая в результате испытания примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые невозможно заранее учесть.
Опр2. Переменная x с областью изменения X называется случайной, если свои возможные значения q из множества X переменная x принимает в результате некоторого опыта со случайными элементарными исходами вида .
Закон
распределения –
функция
скалярного аргумента q, определенная
на всей числовой прямой, характеризующую
объективную возможность появления в
опыте значений q
случайной переменной x.
Полной
характеристикой СП служит её
дифференциальный
закон распределения
(ЗР). Так называется функция
скалярного аргумента q, определённая
на всей числовой прямой, характеризующая
объективную возможность появления в
опыте
значений СП x. Если x – ДСП, то
Для
дискретной величины
Для
непрерывной величины
Закон распределения Стьюдента случайной величины имеет вид(СтьюдРАСП-значение з-на распределения):
,
Г- гамма функция Эйлера, m- число степеней своб.
Пусть
имеется выборка наблюденных в n+1
независимых испытаниях значений
стандартной нормально распределенной
случайной переменной x
(т.е. x
N(0;1)):
(x1,
х2,…,хn,
хn+1)
Для расчёта tкрит используем ф-цию – дробь Стьюдента с n степенями свободы.
Этот закон позволяет нам при любом фиксированном числе 1-α из интервала (0, 1) вычислить величину t1-α – двустороннюю (1-α)-квантиль распределения Стьюдента с числом свободы n (к-т Стьюдента tкрит). Величину t1-α можно рассчитать в Excel по аргументам α, n при помощи функции СТЬЮДРАСПОБР.
Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
Экономические переменные объекта (случайные или детерминированные), как правило, являются зависимыми величинами. Ковариации и коэффициент корреляции служат мерилами такой зависимости. Так, если (x, y) – пара случайных переменных (СП), то их ковариацией называется константа Cxy :
Cxy = Cov(x, y) = E(x · y) – E(x) · E(y). (1)
Из формулы (1) видно, что для вычисления Cxy нужно знать закон распределения Pxy (q, r) пары (x, y). Если он неизвестен, что и бывает на практике, то ковариацию можно оценить по выборке из генеральной совокупности Xx,y:
{(x1, y1), (x2, y2), ... (xn, yn)}, (2)
Оценкой ковариации служит величина
(3)
именуемая выборочной ковариацией. Каждая пара в выборке (2) имеет один и тот же закон распределения, Pxy (q, r); компонеты двух различных пар, например, (x1, y1) и (x2, y2) являются независимыми случайными переменными. Добавим, что случайные переменные (xi, xj) из выборки (2) обладают одинаковыми количественными характеристиками; аналогично, случайные переменных (yi,yj) имеют одинаковые количественные характеристики.
Оценка (3) совершеннее оценки (4) в том смысле, что она обладает свойством несмещённости,
(4)
отсутствующим у оценки, которая, в силу данного обстоятельства, является смещённой оценкой ковариации.
Наконец, отметим, что физическая размерность Cxy равна произведению физических размерностей СП x и y. Но часто удобно использовать безразмерную (нормированную) ковариацию xy ,
,
которая именуется коэффициентом корреляции. Замечательно, что всегда
–1 xy +1,
причём
если |xy |
= 1, то y = a0 +
a1 ·
x. Так что при |xy |
= 1 между переменными (x, y) существует
функциональная (жесткая) линейная
зависимость. Если же
= 0, то связь между переменными x
и y
либо вообще отсутствует, либо же имеет
место функциональная (жесткая), но
нелинейная зависимость.