Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Itog_Ekonometr.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
604.77 Кб
Скачать
  1. Случайная переменная и закон её распределения. Распределение хи-квадрат.

Переменная величина называется случайной, если свои возможные значения она принимает в рез-те некоторого опыта, и до его завершения не возможно предсказать какое точно значение она примет.

З-н распределения дискретной случайной переменной- функция скалярного аргумента q с областью определения , характеризующая возможность появления в опыте значений q случайной переменной x.

З-н распределения дискретной случайной переменной называется вероятностной функцией, значение которой равны вероятностям появления в опыте возможного значения сл. переменной:

Закон распределения хи-квадрат случайной величины имеет вид(ХИ2РАСП,ХИ2ОБР):

,

, где n-натуральное число( параметр закона).

  1. Случайная переменная и закон её распределения. Распределение Стьюдента, Квантиль, t крит уровня и её расчёт в Excel.

Опр1. Случайной называют переменную которая в результате испытания примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые невозможно заранее учесть.

Опр2. Переменная x с областью изменения X называется случайной, если свои возможные значения q из множества X переменная x принимает в результате некоторого опыта со случайными элементарными исходами вида .

Закон распределения – функция скалярного аргумента q, определенная на всей числовой прямой, характеризующую объективную возможность появления в опыте значений q случайной переменной x.

Полной характеристикой СП служит её дифференциальный закон распределения (ЗР). Так называется функция скалярного аргумента q, определённая на всей числовой прямой, характеризующая объективную возможность появления в опыте значений СП x. Если x – ДСП, то

Для дискретной величины

Для непрерывной величины

Закон распределения Стьюдента случайной величины имеет вид(СтьюдРАСП-значение з-на распределения):

,

Г- гамма функция Эйлера, m- число степеней своб.

Пусть имеется выборка наблюденных в n+1 независимых испытаниях значений стандартной нормально распределенной случайной переменной x (т.е. x N(0;1)): (x1, х2,…,хn, хn+1)

Для расчёта tкрит используем ф-цию – дробь Стьюдента с n степенями свободы.

Этот закон позволяет нам при любом фиксированном числе 1-α из интервала (0, 1) вычислить величину t1-α – двустороннюю (1-α)-квантиль распределения Стьюдента с числом свободы n (к-т Стьюдента tкрит). Величину t1-α можно рассчитать в Excel по аргументам α, n при помощи функции СТЬЮДРАСПОБР.

  1. Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.

Экономические переменные объекта (случайные или детерминированные), как правило, являются зависимыми величинами. Ковариации и коэффициент корреляции служат мерилами такой зависимости. Так, если (x, y) – пара случайных переменных (СП), то их ковариацией называется константа Cxy :

Cxy = Cov(x, y) = E(x · y) – E(x) · E(y). (1)

Из формулы (1) видно, что для вычисления Cxy  нужно знать закон распределения Pxy (q, r) пары (x, y). Если он неизвестен, что и бывает на практике, то ковариацию можно оценить по выборке из генеральной совокупности Xx,y:

{(x1, y1), (x2, y2), ... (xn, yn)}, (2)

Оценкой ковариации служит величина

(3)

именуемая  выборочной ковариацией. Каждая пара в выборке (2) имеет один и тот же закон распределения, Pxy (q, r); компонеты двух различных пар, например, (x1, y1) и (x2, y2) являются независимыми случайными переменными. Добавим, что случайные переменные (xi, xj) из выборки (2) обладают одинаковыми количественными характеристиками; аналогично, случайные переменных (yi,yj) имеют одинаковые количественные характеристики.

Оценка (3) совершеннее оценки (4) в том смысле, что она обладает свойством несмещённости,

(4)

отсутствующим у оценки, которая, в силу данного обстоятельства, является смещённой оценкой ковариации.

Наконец, отметим, что физическая размерность Cxy  равна произведению физических размерностей СП x и y. Но часто удобно использовать безразмерную (нормированную) ковариацию xy ,

,

которая именуется коэффициентом корреляции. Замечательно, что всегда

–1  xy   +1,

причём если |xy | = 1, то y = a+ a· x. Так что при |xy | = 1 между переменными (x, y) существует функциональная (жесткая) линейная зависимость. Если же = 0, то связь между переменными x и y либо вообще отсутствует, либо же имеет место функциональная (жесткая), но нелинейная зависимость.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]