
- •1. Назначение экономико-математических моделей (эмм). Два принципа их спецификации. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •2. Типы переменных в экономических моделях. Структурная и приведённая форма модели (на примере макромодели). Компактная запись.
- •4. Спецификация и преобразование к приведённой форме эконометрических моделей. Эконометрическая модель Самуэльсона–Хикса делового цикла экономики. Компактная запись.
- •Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации функции линейн.
- •Случайная переменная и закон её распределения. Нормальный закон распределения и его параметры.
- •Случайная переменная и закон её распределения. Распределение хи-квадрат.
- •Случайная переменная и закон её распределения. Распределение Стьюдента, Квантиль, t крит уровня и её расчёт в Excel.
- •Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
- •Свойства
- •Случайная переменная и закон её распределения. Закон распределения Фишера. Квантиль, f крит уровня и её расчёт в Excel.
- •Случайный вектор и его основные количественные характеристики (на примере вектора левых частей схемы Гаусса – Маркова при гомоскедастичном неавтокоррелированном остатке).
- •Случайный вектор и факторизация его ковариационной матрицы. Случайный вектор случайных остатков в схеме Гаусса – Маркова при гетероскедастичном неавтокоррелированном остатке.
- •Временной ряд и его структура (На примере ввп России).
- •Модели тренда временного ряда.
- •17. Моделирование сезонной составляющей при помощи фиктивных переменных.
- •18. Регрессионная зависимость случайных переменных. Функция регрессии, стандартные модели функции регрессии.
- •19.Схема Гаусса–Маркова (на примере модели Оукена).
- •20.Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные статистические процедуры. Требования к наилучшей статистической процедуре.
- •21. Теорема Гаусса-Маркова: выражение вектора оценок коэффициентов и доказательство их несмещённости.
- •22. Теорема Гаусса-Маркова: выражение Cov( , ) и его обоснование.
- •24. Теорема Гаусса-Маркова: выражение .
- •25. Взвешенный метод наименьших квадратов (вмнк). Простейшая модель гетероскедастичности случайного остатка. Практическая реализация вмнк.
- •27. Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов (мнк) линейной модели парной регрессии (на примере модели Оукена).
- •28. Ковариационная матрица оценок коэффициентов линейной модели парной регрессии: явные выражения .
- •29.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: независимость случайных векторов
- •30.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределение оценки .
- •31. Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределения дроби .
- •32. Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).
- •34. Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).
- •35. Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.
- •Тест Голдфелда-Квандта гомоскедастичности случайного остатка в лммр
- •37.Тест Дарбина–Уотсона отсутствия автокорреляции случайного остатка в лммр.
- •38.Коэффициент детерминации как мерило качества спецификации эконометрической модели (на примере модели Оукена). Скорректированный коэффициент детерминации.
- •39. Связь коэффициента детерминации с коэффициентом корреляции эндогенной переменной и её оценки (на примере модели Оукена).
- •41. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной (на примере модели Оукена).
- •42.Процедура проверки адекватности оценённой линейной эконометрической модели (на примере модели Оукена).
- •43.Последствия, симптомы и методика устранения ошибки спецификации эконометрической модели, состоящей в неверном выборе функции регрессии.
- •44.Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей во включении незначимой объясняющей переменной.
- •45. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в пропуске значимой объясняющей переменной.
- •46. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в непостоянстве значений её параметров в области изменения объясняющих переменных; тест Чоу.
- •47. Основные характеристики временного ряда.
- •48. Стационарный временной ряд. Белый шум.
- •49.Оценка характеристик стационарного временного ряда.
- •Частная автокорреляционная функция стационарного временного ряда и алгоритм её оценивания.
- •Модель ar(p) и её идентификация.
- •Модель ma(q) и её идентификация.
- •Оптимальный линейный алгоритм прогнозирования уровней стационарного временного ряда.
- •Модели нестационарных временных рядов. Идентификация модели тренда.
- •Оценивание линейной модели с автокоррелированным остатком ar(1) алгоритмом Хильдретта – Лу.
- •Проблема мультиколлинеарности, типы и симптомы мультиколлинеарности. Методика отбора регрессоров в линейной модели в ситуации мультиколлинеарности.
- •Модели с лаговыми переменными: авторегрессионная модель и модель распределённых лагов; проблемы оценивания этих моделей.
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса-предложения блага).
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
- •60. Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка)
- •61. Критерий идентифицируемости поведенческого уравнения модели слоу (правило ранга)
- •62. Понятие инструментальных переменных. Оценивание параметров структурной формы двухшаговым м-ом наименьших квадратов на примере простейшей макромодели Кейнса
- •63. Теорема Слуцкого и оценивание параметров структурной формы косвенным методом наименьших квадратов (кмнк) – на примере простейшей макромодели Кейнса.
62. Понятие инструментальных переменных. Оценивание параметров структурной формы двухшаговым м-ом наименьших квадратов на примере простейшей макромодели Кейнса
2МНК – двухшаговый метод наименьших квадратов – наиболее удобный для расчетов метод состоятельного оценивания коэф-ов идентифицируемых поведенческих ур-ний.
Алгоритм 2МНК обсудим на примере оценивания м-ли Кейнса:
1
шаг.
Оценить МНК параметры приведенной формы
м-ли для эндогенных переменных
,
включенных в правую часть оцениваемого
поведенческого уравнения.
Для м-ли Кейнса уравнения наблюдений:
2
шаг.
Вычислить прогнозн.значения
по оцененной приведенной форме модели.
Для модели Кейнса формула расчета
прогнозных значений выглядит так:
оптимальное
прогнозное значение дохода
3
шаг.
Оценить МНК структурные параметры
поведенч.ур-я, рассматривая оценки
вместе с предопред.велич.
как значения объясняющих переменных.
Для м-ли Кейнса уравнен.наблюдений на 2-ом шаге имеют вид:
Полученные
МНК по этим уравнениям оценки
являются состоятельными оценками
коэф-ов (
и носят название оценок структурных
параметров двухшаговым мет-ом наим.кв-ов
(2МНК).
Упомянутые в алгоритме 2МНК прогнозные значения эндогенных переменных служат примером инструментальных переменных, которые экономисты используют для вычисления состоятельных оценок коэф-ов повед.ур-ний в ситуации нарушения последней предпосылки теоремы Гаусса-Маркова.
Определение:
Пусть объясняющие переменные в ЛММР
коррелируют в пределе со случайным
остатком
, т.е. нарушена последняя
предпос.т.Гаусса-Маркова. Переменные
инструментальные, если они удовлетворяют
2 требованиям:
в пределе не коррелируются случайным остатком модели
матрица
невырожденная
Тогда
оценки модели ЛММР, вычисленные по
правилу
являются состоятельными.
63. Теорема Слуцкого и оценивание параметров структурной формы косвенным методом наименьших квадратов (кмнк) – на примере простейшей макромодели Кейнса.
Рассмотрим
структурную форму модели СЛОУ и
трансформируем ее к приведенной форме,
т.е. выразим вектор
через
вектор
Символом
обозначим матрицу коэффициентов
приведенной формы модели.Эта матрица
следующим образом зависит от
и
(
)
.
Добавим, что матрица М может быть оценена по результатам наблюдений эндогенных и предопределенных переменных данной модели, например, методом наим.кв-ов.
Теорема Слуцкого
Пусть
матрица состоятельных МНК-оценок коэф-ов
приведенной формы модели СЛОУ, т.е.
.
Пусть
любая рациональная вектор-функция,
такая что значение
конечно. Тогда
.
Запишем
с учетом отмеченного выражения матрицы
,
линейного ограничения на параметры
и условия нормализации
систему
уравнений, которой удовлетворяет вектор
искомых параметров
исследуемого поведенческого уравнения
I-
единичная матрицца
Рассматривая
эту систему, констатируем, что искомый
вектор коэф-ов
является решением этой системы и,
следовательно,
рациональная функция матрицы
.
Согласно
теореме Слуцкого, оценка вектора
,
вычисленная в процессе решения системы
(1)
оказывается состоятельной оценкой
вектора
Оценки
- оценки поведенческого уравнения
косвенным методом наименьших квадратов.
КМНК для м-ли Кейнса
Структурная форма
Приведенная форма
Пусть
в результате оценивания МНК приведенной
формы модели получились оценки параметров
и
(
.
Подставляя эти оценки в наше уравнение
и разрешая эти уравнения относительно
и
,
получим оценки косвенным м-ом наименьших
квадратов, т.е.
и
.