
- •1. Назначение экономико-математических моделей (эмм). Два принципа их спецификации. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •2. Типы переменных в экономических моделях. Структурная и приведённая форма модели (на примере макромодели). Компактная запись.
- •4. Спецификация и преобразование к приведённой форме эконометрических моделей. Эконометрическая модель Самуэльсона–Хикса делового цикла экономики. Компактная запись.
- •Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации функции линейн.
- •Случайная переменная и закон её распределения. Нормальный закон распределения и его параметры.
- •Случайная переменная и закон её распределения. Распределение хи-квадрат.
- •Случайная переменная и закон её распределения. Распределение Стьюдента, Квантиль, t крит уровня и её расчёт в Excel.
- •Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
- •Свойства
- •Случайная переменная и закон её распределения. Закон распределения Фишера. Квантиль, f крит уровня и её расчёт в Excel.
- •Случайный вектор и его основные количественные характеристики (на примере вектора левых частей схемы Гаусса – Маркова при гомоскедастичном неавтокоррелированном остатке).
- •Случайный вектор и факторизация его ковариационной матрицы. Случайный вектор случайных остатков в схеме Гаусса – Маркова при гетероскедастичном неавтокоррелированном остатке.
- •Временной ряд и его структура (На примере ввп России).
- •Модели тренда временного ряда.
- •17. Моделирование сезонной составляющей при помощи фиктивных переменных.
- •18. Регрессионная зависимость случайных переменных. Функция регрессии, стандартные модели функции регрессии.
- •19.Схема Гаусса–Маркова (на примере модели Оукена).
- •20.Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные статистические процедуры. Требования к наилучшей статистической процедуре.
- •21. Теорема Гаусса-Маркова: выражение вектора оценок коэффициентов и доказательство их несмещённости.
- •22. Теорема Гаусса-Маркова: выражение Cov( , ) и его обоснование.
- •24. Теорема Гаусса-Маркова: выражение .
- •25. Взвешенный метод наименьших квадратов (вмнк). Простейшая модель гетероскедастичности случайного остатка. Практическая реализация вмнк.
- •27. Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов (мнк) линейной модели парной регрессии (на примере модели Оукена).
- •28. Ковариационная матрица оценок коэффициентов линейной модели парной регрессии: явные выражения .
- •29.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: независимость случайных векторов
- •30.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределение оценки .
- •31. Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределения дроби .
- •32. Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).
- •34. Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).
- •35. Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.
- •Тест Голдфелда-Квандта гомоскедастичности случайного остатка в лммр
- •37.Тест Дарбина–Уотсона отсутствия автокорреляции случайного остатка в лммр.
- •38.Коэффициент детерминации как мерило качества спецификации эконометрической модели (на примере модели Оукена). Скорректированный коэффициент детерминации.
- •39. Связь коэффициента детерминации с коэффициентом корреляции эндогенной переменной и её оценки (на примере модели Оукена).
- •41. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной (на примере модели Оукена).
- •42.Процедура проверки адекватности оценённой линейной эконометрической модели (на примере модели Оукена).
- •43.Последствия, симптомы и методика устранения ошибки спецификации эконометрической модели, состоящей в неверном выборе функции регрессии.
- •44.Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей во включении незначимой объясняющей переменной.
- •45. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в пропуске значимой объясняющей переменной.
- •46. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в непостоянстве значений её параметров в области изменения объясняющих переменных; тест Чоу.
- •47. Основные характеристики временного ряда.
- •48. Стационарный временной ряд. Белый шум.
- •49.Оценка характеристик стационарного временного ряда.
- •Частная автокорреляционная функция стационарного временного ряда и алгоритм её оценивания.
- •Модель ar(p) и её идентификация.
- •Модель ma(q) и её идентификация.
- •Оптимальный линейный алгоритм прогнозирования уровней стационарного временного ряда.
- •Модели нестационарных временных рядов. Идентификация модели тренда.
- •Оценивание линейной модели с автокоррелированным остатком ar(1) алгоритмом Хильдретта – Лу.
- •Проблема мультиколлинеарности, типы и симптомы мультиколлинеарности. Методика отбора регрессоров в линейной модели в ситуации мультиколлинеарности.
- •Модели с лаговыми переменными: авторегрессионная модель и модель распределённых лагов; проблемы оценивания этих моделей.
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса-предложения блага).
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
- •60. Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка)
- •61. Критерий идентифицируемости поведенческого уравнения модели слоу (правило ранга)
- •62. Понятие инструментальных переменных. Оценивание параметров структурной формы двухшаговым м-ом наименьших квадратов на примере простейшей макромодели Кейнса
- •63. Теорема Слуцкого и оценивание параметров структурной формы косвенным методом наименьших квадратов (кмнк) – на примере простейшей макромодели Кейнса.
Модели с лаговыми переменными: авторегрессионная модель и модель распределённых лагов; проблемы оценивания этих моделей.
Наиболее частой ошибкой спецификации модели является неправильный выбор функции регрессии и, в частности, отсутствие в функции значащей объясняемой переменной. Тогда для сглаживания негативного влияния пропущенного регрессора используют его заместитель (proxy - xpr). Это переменная, которая коррелирована с пропущенным регрессором и доступна для наблюдения. В качестве такого заместителя часто выступают лаговые значения эндогенных и экзогенных переменных.
Если
используется лаговое значение эндогенной
переменной, то такая модель называется
авторегрессионной моделью. Спецификация:
При оценивании моделей такого типа оказывается нарушенной 4ая предпосылка теоремы Гаусса-Маркова (о некоррелируемости объясняющих переменных со случайными остатками).
Значит, оценки МНК (или любого другого метода) утрачивают либо несмещенность на контролирующей выборке (если сл. остатки в модели не имеют автокорреляции), либо состоятельность, если остатки автокоррелированы.
Если
используется эндогенная переменная
объясняется через текущие и лаговые
значения экзогенных, то такая модель
называется моделью с распределенными
лагами. Спецификация модели:
Поскольку временной ряд , как правило, не является белым шумом, то соседние уровни этой переменной сильно зависят друг от друга, и поэтому в модели возникает ситуация мультиколлинеарности (линейная зависимость столбцов матрицы экзогенных переменных). А это нарушение исходной предпосылки теоремы Гаусса-Маркова. В такой ситуации оценки параметров модели становятся ненадежными.
Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса-предложения блага).
В
общем случае экономическая модель может
включать в себя несколько текущих
эндогенных переменных. Линейная
экономическая модель в общем случае
имеет спецификацию
(1).
Пример – модель спроса и предложения на конкурентном рынке:
(2)
Модель (1) называют моделью из одновременных уравнений, поскольку какие-то эндогенные переменные модели в некоторых поведенческих уравнениях могут играть роль объясняющих переменных, например, в модели (2) объясняющей эндогенной переменной в обоих уравнениях является цена р.
Моделям (1) присущи 2 проблемы – проблема идентификации и проблема оценивания параметров структурной формы.
Рассмотрим
первую проблему на примере модели (2).
Можно ли определить параметры а0, а1, b0,
b1
поведенческих уравнений? Построим
графики спроса и предложения.
Для
наблюдений в рамках модели доступна
равновесная цена
и
уровень спроса и предложения по
равновесной цене
.Знание
точки Е не позволяет определить ни
параметры кривой спроса, ни предложения.
Поясним эту мысль, составив приведенную форму (случайные остатки пока опустим)
(3).
Рассматривая (3), констатируем, что эта
форма состоит из двух уравнений с
четырьмя искомыми параметрами. Определить
их однозначно нельзя. В этом и заключается
неидентифицируемость обоих уравнений
модели (2). Например, если (3) разрешить
относительно а1 и b1
:
,
то задаваясь любыми подходящими а0, b0
получим то или иное решение уравнений
(3).
Опр: Поведенческое уравнение модели (1) является идентифицируемым, если по известным коэффициентам приведенной формы модели можно определить коэффициенты данного поведенческого уравнения.