
- •1. Назначение экономико-математических моделей (эмм). Два принципа их спецификации. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •2. Типы переменных в экономических моделях. Структурная и приведённая форма модели (на примере макромодели). Компактная запись.
- •4. Спецификация и преобразование к приведённой форме эконометрических моделей. Эконометрическая модель Самуэльсона–Хикса делового цикла экономики. Компактная запись.
- •Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации функции линейн.
- •Случайная переменная и закон её распределения. Нормальный закон распределения и его параметры.
- •Случайная переменная и закон её распределения. Распределение хи-квадрат.
- •Случайная переменная и закон её распределения. Распределение Стьюдента, Квантиль, t крит уровня и её расчёт в Excel.
- •Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
- •Свойства
- •Случайная переменная и закон её распределения. Закон распределения Фишера. Квантиль, f крит уровня и её расчёт в Excel.
- •Случайный вектор и его основные количественные характеристики (на примере вектора левых частей схемы Гаусса – Маркова при гомоскедастичном неавтокоррелированном остатке).
- •Случайный вектор и факторизация его ковариационной матрицы. Случайный вектор случайных остатков в схеме Гаусса – Маркова при гетероскедастичном неавтокоррелированном остатке.
- •Временной ряд и его структура (На примере ввп России).
- •Модели тренда временного ряда.
- •17. Моделирование сезонной составляющей при помощи фиктивных переменных.
- •18. Регрессионная зависимость случайных переменных. Функция регрессии, стандартные модели функции регрессии.
- •19.Схема Гаусса–Маркова (на примере модели Оукена).
- •20.Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные статистические процедуры. Требования к наилучшей статистической процедуре.
- •21. Теорема Гаусса-Маркова: выражение вектора оценок коэффициентов и доказательство их несмещённости.
- •22. Теорема Гаусса-Маркова: выражение Cov( , ) и его обоснование.
- •24. Теорема Гаусса-Маркова: выражение .
- •25. Взвешенный метод наименьших квадратов (вмнк). Простейшая модель гетероскедастичности случайного остатка. Практическая реализация вмнк.
- •27. Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов (мнк) линейной модели парной регрессии (на примере модели Оукена).
- •28. Ковариационная матрица оценок коэффициентов линейной модели парной регрессии: явные выражения .
- •29.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: независимость случайных векторов
- •30.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределение оценки .
- •31. Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределения дроби .
- •32. Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).
- •34. Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).
- •35. Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.
- •Тест Голдфелда-Квандта гомоскедастичности случайного остатка в лммр
- •37.Тест Дарбина–Уотсона отсутствия автокорреляции случайного остатка в лммр.
- •38.Коэффициент детерминации как мерило качества спецификации эконометрической модели (на примере модели Оукена). Скорректированный коэффициент детерминации.
- •39. Связь коэффициента детерминации с коэффициентом корреляции эндогенной переменной и её оценки (на примере модели Оукена).
- •41. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной (на примере модели Оукена).
- •42.Процедура проверки адекватности оценённой линейной эконометрической модели (на примере модели Оукена).
- •43.Последствия, симптомы и методика устранения ошибки спецификации эконометрической модели, состоящей в неверном выборе функции регрессии.
- •44.Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей во включении незначимой объясняющей переменной.
- •45. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в пропуске значимой объясняющей переменной.
- •46. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в непостоянстве значений её параметров в области изменения объясняющих переменных; тест Чоу.
- •47. Основные характеристики временного ряда.
- •48. Стационарный временной ряд. Белый шум.
- •49.Оценка характеристик стационарного временного ряда.
- •Частная автокорреляционная функция стационарного временного ряда и алгоритм её оценивания.
- •Модель ar(p) и её идентификация.
- •Модель ma(q) и её идентификация.
- •Оптимальный линейный алгоритм прогнозирования уровней стационарного временного ряда.
- •Модели нестационарных временных рядов. Идентификация модели тренда.
- •Оценивание линейной модели с автокоррелированным остатком ar(1) алгоритмом Хильдретта – Лу.
- •Проблема мультиколлинеарности, типы и симптомы мультиколлинеарности. Методика отбора регрессоров в линейной модели в ситуации мультиколлинеарности.
- •Модели с лаговыми переменными: авторегрессионная модель и модель распределённых лагов; проблемы оценивания этих моделей.
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса-предложения блага).
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
- •60. Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка)
- •61. Критерий идентифицируемости поведенческого уравнения модели слоу (правило ранга)
- •62. Понятие инструментальных переменных. Оценивание параметров структурной формы двухшаговым м-ом наименьших квадратов на примере простейшей макромодели Кейнса
- •63. Теорема Слуцкого и оценивание параметров структурной формы косвенным методом наименьших квадратов (кмнк) – на примере простейшей макромодели Кейнса.
Частная автокорреляционная функция стационарного временного ряда и алгоритм её оценивания.
Рассмотрим уровни ряда ut на отрезке [t;t+ τ] (ut, ut+1 , … , ut+ τ -1, ut+ τ)
Удалим(при помощи уравнения регрессии) влияние членов ut, … , ut+ τ-1 из уровней ut и ut+ τ. После этого рассмотрим ковариацию остатков ut и ut+ τ. Это и будет частная автокорреляционная функция в точке τ.
Ϭuu(p)(τ)=
(2.10)
На основании 2.10 дается определение частной автокорреляционной функции стационарного ряда
ρuu(p)(τ)=
Частная автокорреляционная функция белого шума имеет уравнение
ρξξ(p)(τ)=
ρξξ(τ)=
Можно обосновать следующий алгоритм оценивания частной автокорреляционной функции ряда по его реализации :
Оценить МНК параметры модели
1.
2. Принять
оценкой ρuu(p)(τ) оценку βτ.
Модель ar(p) и её идентификация.
Авторегрессия первого порядка:
,
,имеет
смысл коэффициента корреляции уровней
ряда в соседние моменты времени.
Автокорреляционная функция имеет уровни ρuu(i,j)=ρ|i-j|=ρτ и экспоненциально убывает с ростом лага τ
При ρ=0 ряд превращается в WN. Если ρ=1, то ряд становится нестационарным рядом, называющимся случайным блужданием.
Теорема позволяющая идентифицировать временной ряд AR(1):
Если utϵAR(1), то его частная автокорреляционная функция тождественно равна 0, при τ>1
ρuu(p)(τ)=
Модель авторегрессии порядка р задается поведенческим уравнением:
ut=β1ut-1+ β2ut-2+…+ βput-p+ξt
Для
модели AR(p)
частная автокорреляционная функция
авна 0 при
.
Модель ma(q) и её идентификация.
Модель первого порядка:
Теорема. Если utϵMA(1) то
Ряд порожденный этой моделью является стационарным
E(ut)=0, Ϭu2=Ϭξ2(1+γ2)
Автокорреляционная функция ряда MA(1) имеет уравнение:
ρuu(τ)=
Рекурсивное уравнение модели:
ut=γ1ξt-1+ γ 2ξt-2+…+ γ pξt-p+ξt
Теорема. Если utϵMA(q) то ρuu(τ)=0 при τ>q.
Оптимальный линейный алгоритм прогнозирования уровней стационарного временного ряда.
Пусть уровни ряда ut STS наблюдались в моменты времени t=1,2,…,n. Результаты этих наблюдений обозначим символами u1, u2,…,un. Расположим эти результаты в обратном порядке и будем интерпретировать такой набор как случайный вектор , т.е.
T=(un,..,u2,u1) (1).
Задача
прогнозирования заключается в построении
правила прогноза будущего уровня
n+τ
наблюдаемого ряда по его известным
уровням (1), следовательно
n+τ
есть значение некоторой функции f
наблюдаемых уровней (1):
n+τ=f (u1, u2,…,un). (2)
Прогноз
будет являться оптимальным, если он
удовлетворяет требованиям, предъявляемым
к статистическим процедурам:
(3)
Прогнозный алгоритм оптимальный в множестве всех функций аргумента- это условное математическое ожидание :
u1,
u2,…,un).
(4)
Пусть временной ряд ut STS является гауссовским, т .е. его уровни образуют нормально распределенный случайный вектор
T=( u1, u2,…,un,…,ut+τ,…,uN). (5)
Вектор наблюдений (1) роль объясняющего вектора , поэтому
(6)
Здесь
Будущий
уровень ряда
n+τ
интерпретируем
как вектор
.
Так что
.
Ковариационная
матрица
.
Находим матрицу
=
T.
Тогда оптимальный алгоритм прогнозирования уровней гауссовского стационарного временного ряда принимает вид
u1,
u2,…,un)=
T
(7)
Алгоритм (7) является линейным. Действительно, проведя перегруппировку членов в правой части равенства (7), увидим, что
a0+a1un+a2un-1+…+anu1.