
- •1. Назначение экономико-математических моделей (эмм). Два принципа их спецификации. Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •2. Типы переменных в экономических моделях. Структурная и приведённая форма модели (на примере макромодели). Компактная запись.
- •4. Спецификация и преобразование к приведённой форме эконометрических моделей. Эконометрическая модель Самуэльсона–Хикса делового цикла экономики. Компактная запись.
- •Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации функции линейн.
- •Случайная переменная и закон её распределения. Нормальный закон распределения и его параметры.
- •Случайная переменная и закон её распределения. Распределение хи-квадрат.
- •Случайная переменная и закон её распределения. Распределение Стьюдента, Квантиль, t крит уровня и её расчёт в Excel.
- •Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
- •Свойства
- •Случайная переменная и закон её распределения. Закон распределения Фишера. Квантиль, f крит уровня и её расчёт в Excel.
- •Случайный вектор и его основные количественные характеристики (на примере вектора левых частей схемы Гаусса – Маркова при гомоскедастичном неавтокоррелированном остатке).
- •Случайный вектор и факторизация его ковариационной матрицы. Случайный вектор случайных остатков в схеме Гаусса – Маркова при гетероскедастичном неавтокоррелированном остатке.
- •Временной ряд и его структура (На примере ввп России).
- •Модели тренда временного ряда.
- •17. Моделирование сезонной составляющей при помощи фиктивных переменных.
- •18. Регрессионная зависимость случайных переменных. Функция регрессии, стандартные модели функции регрессии.
- •19.Схема Гаусса–Маркова (на примере модели Оукена).
- •20.Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные статистические процедуры. Требования к наилучшей статистической процедуре.
- •21. Теорема Гаусса-Маркова: выражение вектора оценок коэффициентов и доказательство их несмещённости.
- •22. Теорема Гаусса-Маркова: выражение Cov( , ) и его обоснование.
- •24. Теорема Гаусса-Маркова: выражение .
- •25. Взвешенный метод наименьших квадратов (вмнк). Простейшая модель гетероскедастичности случайного остатка. Практическая реализация вмнк.
- •27. Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов (мнк) линейной модели парной регрессии (на примере модели Оукена).
- •28. Ковариационная матрица оценок коэффициентов линейной модели парной регрессии: явные выражения .
- •29.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: независимость случайных векторов
- •30.Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределение оценки .
- •31. Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределения дроби .
- •32. Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).
- •34. Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).
- •35. Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.
- •Тест Голдфелда-Квандта гомоскедастичности случайного остатка в лммр
- •37.Тест Дарбина–Уотсона отсутствия автокорреляции случайного остатка в лммр.
- •38.Коэффициент детерминации как мерило качества спецификации эконометрической модели (на примере модели Оукена). Скорректированный коэффициент детерминации.
- •39. Связь коэффициента детерминации с коэффициентом корреляции эндогенной переменной и её оценки (на примере модели Оукена).
- •41. Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной (на примере модели Оукена).
- •42.Процедура проверки адекватности оценённой линейной эконометрической модели (на примере модели Оукена).
- •43.Последствия, симптомы и методика устранения ошибки спецификации эконометрической модели, состоящей в неверном выборе функции регрессии.
- •44.Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей во включении незначимой объясняющей переменной.
- •45. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в пропуске значимой объясняющей переменной.
- •46. Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в непостоянстве значений её параметров в области изменения объясняющих переменных; тест Чоу.
- •47. Основные характеристики временного ряда.
- •48. Стационарный временной ряд. Белый шум.
- •49.Оценка характеристик стационарного временного ряда.
- •Частная автокорреляционная функция стационарного временного ряда и алгоритм её оценивания.
- •Модель ar(p) и её идентификация.
- •Модель ma(q) и её идентификация.
- •Оптимальный линейный алгоритм прогнозирования уровней стационарного временного ряда.
- •Модели нестационарных временных рядов. Идентификация модели тренда.
- •Оценивание линейной модели с автокоррелированным остатком ar(1) алгоритмом Хильдретта – Лу.
- •Проблема мультиколлинеарности, типы и симптомы мультиколлинеарности. Методика отбора регрессоров в линейной модели в ситуации мультиколлинеарности.
- •Модели с лаговыми переменными: авторегрессионная модель и модель распределённых лагов; проблемы оценивания этих моделей.
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса-предложения блага).
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
- •60. Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка)
- •61. Критерий идентифицируемости поведенческого уравнения модели слоу (правило ранга)
- •62. Понятие инструментальных переменных. Оценивание параметров структурной формы двухшаговым м-ом наименьших квадратов на примере простейшей макромодели Кейнса
- •63. Теорема Слуцкого и оценивание параметров структурной формы косвенным методом наименьших квадратов (кмнк) – на примере простейшей макромодели Кейнса.
31. Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределения дроби .
-
стандартная ошибка (оценка среднего
квадратического отклонения) компоненты
.
Докажем, что случайная переменная
(8.107)
имеет закон распределения Стьюдента с количеством степеней свободы n-(k+1), т.е.
(8.108)
Доказательство.
Разделим
числитель и знаменатель дроби (8.107) на
константу
.
Учитывая (из 30-го вопроса), получим:
(8.109)
Здесь
символом
обозначена стандартная нормально
распределённая случайная переменная.
-
дробь Стьюдента с n
степенями свободы
(7.47)
С учётом (7.47) и (8.109) получим представление (8.108)
32. Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).
Задача:
пусть в схеме Гаусса-Маркова
вектор случайных остатков с числовыми
характеристиками
,
, имеет нормальный закон распределения.
Требуется оценить параметры
и
модели методом максимального
правдоподобия.
Решение: Будем предполагать, что объясняющие переменные в модели
детерминированные,
матрицу
полагаем известной. Из
и сделанного предположения о числовых
характеристиках и законе распределения
вектора
следует, что вектор
тоже обладает нормальным законом
распределения
с
числовыми характеристиками
и
.
Для отыскания оценок параметров ММП действуем согласно следующему алгоритму:
1)
составим функцию правдоподобия выборки
(
и вычисляем ее логарифм:
2) Найдем производные логарифма по аргументам и приравняем их к нулю:
3)
Решаем полученную систему уравнений.
Сначала из первого уравнения ( после
умножения его на
) находим
:
Затем
подставляем его во второе уравнение
системы и после умножения этого уравнения
на
находим
=
, где
. Полученные величины образуют решение
системы и являются искомыми ММП-оценками
параметров (эффективными и ассимптотически
несмещенными).
34. Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).
Примером нелинейной по коэффициентам функции регрессии служит производственная функция Кобба-Дугласа:
(1)
В
ней Y
– уровень выпуска продукции за принятый
отрезок времени; K
и L
– уровни соответственно основного
капитала и живого труда, использованные
в процессе выпуска величины Y.
Подчеркнём, что функция не линейна по
коэффициентам
.
Это значит, что оценить параметры
эконометрической модели с такой функцией
регрессии строго нельзя ни одним из
обсуждённых методов. Заметим, однако,
что преобразование логарифмирования
позволяет трансформировать функцию
К-Д к линейной по коэффициентам:
(2)
Функция регрессии в уравнении (1) называется стандартной, поскольку операция логарифмирования трансформировала её к линейной по коэффициентам.
С учётом свойств операции логарифмирования составим следующим образом спецификацию модели товаров и услуг в стране:
(3)
(случайные возмущения включили в виде подходящего сомножителя)
После операции логарифмирования с учётом отмеченных в (2) обозначений, мы получили трансформацию модели (3) в виде базовой модели эконометрики:
После оценивания линеаризованной модели можно вернуться при помощи операции возведения в степень к оценке исходной модели (3), где