Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Itog_Ekonometr.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
604.77 Кб
Скачать

31. Свойства мнк-оценок параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: закон распределения дроби .

- стандартная ошибка (оценка среднего квадратического отклонения) компоненты . Докажем, что случайная переменная (8.107)

имеет закон распределения Стьюдента с количеством степеней свободы n-(k+1), т.е.

(8.108)

Доказательство.

Разделим числитель и знаменатель дроби (8.107) на константу .

Учитывая (из 30-го вопроса), получим:

(8.109)

Здесь символом обозначена стандартная нормально распределённая случайная переменная.

- дробь Стьюдента с n степенями свободы (7.47)

С учётом (7.47) и (8.109) получим представление (8.108)

32. Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).

Задача: пусть в схеме Гаусса-Маркова вектор случайных остатков с числовыми характеристиками , , имеет нормальный закон распределения. Требуется оценить параметры и модели методом максимального правдоподобия.

Решение: Будем предполагать, что объясняющие переменные в модели

детерминированные, матрицу полагаем известной. Из и сделанного предположения о числовых характеристиках и законе распределения вектора следует, что вектор тоже обладает нормальным законом распределения

с числовыми характеристиками и .

Для отыскания оценок параметров ММП действуем согласно следующему алгоритму:

1) составим функцию правдоподобия выборки

(

и вычисляем ее логарифм:

2) Найдем производные логарифма по аргументам и приравняем их к нулю:

3) Решаем полученную систему уравнений. Сначала из первого уравнения ( после умножения его на ) находим :

Затем подставляем его во второе уравнение системы и после умножения этого уравнения на находим = , где . Полученные величины образуют решение системы и являются искомыми ММП-оценками параметров (эффективными и ассимптотически несмещенными).

34. Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).

Примером нелинейной по коэффициентам функции регрессии служит производственная функция Кобба-Дугласа:

(1)

В ней Y – уровень выпуска продукции за принятый отрезок времени; K и L – уровни соответственно основного капитала и живого труда, использованные в процессе выпуска величины Y. Подчеркнём, что функция не линейна по коэффициентам . Это значит, что оценить параметры эконометрической модели с такой функцией регрессии строго нельзя ни одним из обсуждённых методов. Заметим, однако, что преобразование логарифмирования позволяет трансформировать функцию К-Д к линейной по коэффициентам:

(2)

Функция регрессии в уравнении (1) называется стандартной, поскольку операция логарифмирования трансформировала её к линейной по коэффициентам.

С учётом свойств операции логарифмирования составим следующим образом спецификацию модели товаров и услуг в стране:

(3)

(случайные возмущения включили в виде подходящего сомножителя)

После операции логарифмирования с учётом отмеченных в (2) обозначений, мы получили трансформацию модели (3) в виде базовой модели эконометрики:

После оценивания линеаризованной модели можно вернуться при помощи операции возведения в степень к оценке исходной модели (3), где

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]