
- •1. Электростатика
- •1.1. Закон сохранения электрического заряда
- •1.2. Закон Кулона
- •1.3. Электростатическое ноле. Напряженность электростатического поля
- •1.4. Теорема Гаусса для электростатического поля
- •1.5. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •Лекция №3
- •1.6. Циркуляция вектора напряженности электростатического поля
- •1.7. Потенциал электростатического поля
- •1.8. Связь напряженности с потенциалом. Эквипотенциальные поверхности
- •1.9. Вычисление разности потенциалов по напряженности поля
- •1.10. Типы диэлектриков. Поляризация диэлектриков
- •1.11. Поляризованность. Напряженность поля в диэлектрике
- •1.12. Электрическое смещение.
- •1.13. Условия на границе двух диэлектриков
- •1.14. Силы, действующие на заряд в диэлектрике
- •1.15. Сегнетоэлектрики
- •Лекция №5,6
- •1.16. Равновесие зарядов на проводнике
- •1.17. Проводники в электростатическом поле
- •1.18. Электрическая емкость уединенного проводника
- •1.19. Конденсаторы
- •1.20. Энергия системы зарядов уединенного проводника и конденсатора. Энергия электростатического поля
- •2. Постоянный электрический ток
- •2.1. Электрический ток. Сила и плотность тока
- •2.2. Сторонние силы. Электродвижущая сила и напряжение
- •2.3. Закон Ома. Сопротивление проводников
- •2.4. Работа и мощность тока. Закон Джоуля-Ленца
- •2.5. Закон Ома для неоднородного участка цени
- •2.6. Разветвленные цепи. Правила Кирxгофа
- •3. Магнитное поле
- •3.1. Магнитное поле и его характеристики
- •3.2. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля
- •3.3. Закон Ампера. Взаимодействие параллельных токов
- •3.4. Магнитная постоянная. Единицы магнитной индукции напряженности магнитного поля
- •3.5. Магнитное поле движущегося заряда
- •3.6. Действие магнитного поля на движущийся заряд
- •3.7. Движение заряженных частиц в магнитном поле
- •3.8. Ускорители заряженных частиц
- •3.9. Циркуляция вектора для магнитного поля в вакууме
- •3.10. Магнитное поле соленоида и тороида
- •3.11. Поток вектора магнитной индукции
- •3.12. Работа по перемещению проводника и контура с током в магнитном поле
- •3.13. Явление электромагнитной индукции
- •3.14. Закон Фарадой и его вывод из закона сохранения энергии
- •3.15. Вращение рамки и магнитном поле
- •3.16. Вихревые токи (токи Фуко)
- •3.17. Индуктивность контура. Самоиндукция
- •3.18. Токи при размыкании и замыкании цепи
- •3.19. Взаимная индукция
- •3.20. Трансформаторы
- •3.21. Энергия магнитного поля
- •4. Магнитные свойства вещества
- •4.1. Магнитные моменты электронов и атомов
- •4.3. Намагниченность. Магнитное поле в веществе
- •4.4. Ферромагнетики и их свойства
- •4.5.Природа ферромагнетизма
- •5. Основ ы теории максвелла для электромагнитного поля
- •5.1. Вихревое электрическое поле
- •5.2.Ток смещения
- •5.3.Уравнение Максвелла для электромагнитного поля
5.3.Уравнение Максвелла для электромагнитного поля
Введение Максвеллом понятия тока смещения привело к завершению созданной теории электромагнитного поля, позволяющей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование которых было ^впоследствии подтверждено.
В основе теории Максвелла лежат рассмотренные четыре уравнения
Электрическое поле может быть как потенциальным (
) и вихревым ( ), поэтому напряженность суммарного поля
.
Так как
циркуляция вектора
равна
нулю, а циркуляция вектора
определяется
выражением (см. 5.2), то циркуляция вектора
напряженности суммарного поля
.
Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и меняющиеся во времени магнитные поля.
Обобщенная теорема о циркуляции вектора :
.
Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.
Теорема Гаусса для поля :
.
Теорема Гаусса для поля В:
.
Величины, входящие в уравнение Максвелла, не являются независимыми, и между ними существует следующая связь :
где ε0 и μ0 - соответственно электрическая и магнитная постоянные, ε и μ -соответственно диэлектрическая и магнитная проницаемости, v- удельная проводимость вещества.
Из уравнений Максвелла вытекает, что источниками электрического поля могут быть электрические заряды либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнитным, т е электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.
Теория Максвелла, являясь обобщением основных законов электрических и магнитных явлений, смогла объяснить не только уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явления. Одним из важных выводов этой теории явилось существование магнитного поля токов смещения, что позволило Максвеллу предсказать существование электромагнитных волн переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля в вакууме равна скорости света. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвелла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г.Герцем, доказавшим, что законы их возбуждения и распространения полностью описываются уравнениями Максвелла Таким образом, теория Максвелла была экспериментально подтверждена.