
- •Требования к машинам. Задачи курса тмм и м
- •Задачи проектирования машин. Критерии и стадии проектирования в ескд. Содержание технического преложения.
- •3. Машины и их классификация.
- •4.Основные сведенья из теории производительности машин.
- •5. Машинный агрегат. Общее устройство.
- •6. Назначение ,устройство и основные виды механизмов
- •7. Строение механизмов. Кинематические пары. Подвижность кинетических пар и механизмов.
- •8. Стадии движения машинного агрегата. Установившееся движение. Энергетическое соотношение. Понятие о кпд механической системы.
- •9. Основы выбора приводного электродвигателя.
- •10. Назначение, основные свойства и виды рычажных механизмов.
- •11.Образование сложных рычажных механизмов.
- •12.Цели и задачи метрического синтеза механизмов. Методы синтеза.
- •13. Порядок синтеза механизмов по критериям производительности машин.
- •14 .Порядок уточнения и поиска параметров механизмов на эвм.
- •15. Назначения и виды передач. Устройство и основные размеры зубчатого колеса.
- •16. Уравнения и свойства эвольвентной боковой поверхности зуба.
- •17. Основной закон в эвольвентном зубчатом зацеплении .Коэффициент перекрытия.
- •18 Кинематика изготовления зубчатых колёс. Способ исправления зубьев. Минимальное число зубьев некорригированного колеса.
- •19. Виды и кинематика зубчатых механизмов с неподвижными осями колёс
- •20. Червячная передача. Устройство, кинематика и синтез.
- •21 .Назначение, виды и устройство эпициклических зубчатых механизмов.
- •22. Кинематика планетарной передачи
- •23. Кинематика дифференциального механизма
- •24. Условия синтеза эпициклических механизмов. Условие соосности.
- •25.Условия соседства в эпициклическом механизме.
- •26 Условие сборки в эпициклическом механизме
- •27 Основы синтеза планетарных передач по методу сомножителей.
- •§ 4. Примеры подбора чисел зубьев для типовых планетарных механизмов
- •28.Управление машинами- автоматами. Виды кулачковых механизмов.
- •29.Цель и порядок составления циклограммы.
- •30. Параметры закона движения кулачкового механизма .Основы выбора.
- •31 Закон равной скорости кулачкового механизма. Преимущества и недостатки
- •32 Закон равной ускорений кулачкового механизма. Преимущества и недостатки
- •33. Синусоидальный и другие законы движения кулачкового мех-ма.
- •34.Угол давления и его связь с основными размерами кулачкового мех-ма.
- •35.Учет угла давления при синтезе кулачкового механизма с поступательным и вращательным движением толкателя.
- •36.Профилирование кулачка по методу обращения движения.
- •37.Обобщённая инертность машинного агрегата.
- •38.Вычисление передаточной функции методами планов и диаграмм.
- •39.Вычисление передаточной функции аналитич. Методом.
- •40.Исследование движения машинного агрегата с помощью диаграммы энергомасс.
- •41.Постановка задачи о регулировании движения машинного агрегата
- •42. Назначение маховика и определение его момента инерции.
- •43. Определение запаса кинетической энергии звеньев машин .
- •44. Цель ,теоретические основы и порядок силового исследования машин. Статистически определяемые кинематические цепи.
- •45. Определение параметров закона движения главного вала машинного агрегата.
- •46. Учет сил инерции звеньев машин.
- •47. Порядок уточнения кпд машины и интенсивность износа кинематических пар.
- •48. Уравнения вращающихся роторов.
- •49. Полное статическое уравновешивание рычажных механизмов
- •50. Частичное статическое уравновешивание рычажных механизмов
- •1. Уравновешивание вертикальной составляющей главного вектора сил инерции.
- •2. Уравновешивание горизонтальной составляющей главного вектора сил инерции.
- •51.Конструкционные примеры уравновешивания машин
- •52.Назначение и способы виброзащиты . Динамическое виброгашение.
- •53. Манипуляторы. Виды систем управления манипуляторами.
- •54. Подвижность и маневренность манипулятора. Структурный синтез.
- •55.Зонаобслуживания.Угол и коэффициент сервиса.
- •56. Кинематика манипулятора по методу преобразования координат
- •57. Решения прямой задачи манипулятора
- •58. Решение обратной задачи манипулятора.
- •59. Динамика манипуляторов
49. Полное статическое уравновешивание рычажных механизмов
Полное статическое уравновешивание рассмотрим на кривошипно-ползунном механизме:
|
Рис 5.4 |
Постановка задачи: Дано: lAB, lBC, lAS1, lBS2, lCS3=0, m1, m2, m3
Определить: mk1, mk2
Распределим
массы звеньев по методу замещающих масс
и сосредоточим их в центрах шарниров
A,B,C. Тогда
где m1 = mA1 + mB1 - масса первого звена, распределенная между массами, сосредоточенными в точках В ; m2 = mВ2 + m - масса второго звена, распределенная между массами, сосредоточенными в точках В и С.
Вначале
проведем уравновешивание массы mC
корректирующей
массой mk2.
Составим уравнение статических моментов
относительно точки В
для звеньев
2 и 3:
.
Задаемся величиной lk2 и получаем корректирующую массу m k2 = m C .lBC / lk2
Затем
уравновешиваем центр массы, которых
после установки корректирующей массы
расположился в точке В:
.
Составляем уравнение статических моментов относительно точки А m k1.lk1 = mВ. lАВ .
Задаемся
величиной lk1
и
получаем корректирующую массу
Окончательно величины корректирующих масс для полного уравновешивания кривошипно-ползунного механизма
50. Частичное статическое уравновешивание рычажных механизмов
Частичное статическое уравновешивание рассмотрим на кривошипно-ползунном механизме.
1. Уравновешивание вертикальной составляющей главного вектора сил инерции.
|
Рис 5.5 |
Постановка задачи: Дано: lAB, lBC, lAS1, lBS2, lCS3=0,
m1, m2, m3 Определить: mk1
В этом случае необходимо добиться, чтобы центр масс механизма при движении перемещался вдоль направляющей ползуна (для схемы на рис. 5.5 по горизонтали). Для этого достаточно уравновесить только массу mB .
Составляем
уравнение статических моментов
относительно точки А
:
Задаемся
величиной lk1
и
получаем корректирующую массу
Окончательно
величина корректирующей массы для
уравновешивания вертикальной составляющей
главного вектора сил инерции
кривошипно-ползунного механизма
.
2. Уравновешивание горизонтальной составляющей главного вектора сил инерции.
|
Рис 5.6 |
Постановка задачи:Дано: lAB, lBC, lAS1, lBS2,
lCS3=0, m1, m2, m3 Определить: mk1
В этом случае необходимо добиться, чтобы центр масс механизма при движении перемещался по дуге окружности радиуса rSм (рис.5.6). Расчет корректирующей массы ведется в два этапа. В начале первой составляющей корректирующей массы mk1 уравновешивается масса mB . Составляется, как и в предыдущем примере, уравнение статических моментов относительно точки А : Задается величина lk1 и рассчитывается корректирующая масса
Затем с помощью второй составляющей корректирующей массы mk1 центр массы mc перемещается в точку Sм. Величина mk1 определяется следующим образом: центр шарнира С соединяется прямой с концом отрезка lk1 точкой Sk . Радиус rSм проводится параллельно отрезку B С. Тогда SkВС = Sk А Sм и x/y =. lk1 / lAB Статический момент относительно точкиSм: mk1
Радиус-вектор
rSм
определяется из подобия треугольников
из пропорций
откуда
Корректирующая
масса, обеспечивающая уравновешивание
горизонтальной составляющей главного
вектора сил инерции кривошипо-ползунного
механизма, размещается на первом звене
механизма и равна сумме составляющих
.
Центр
массы механизма при таком уравновешивании
расположен в точке Sм,
которая движется по дуге радиуса rSм
Схема распределения
масс в механизме после уравновешивания
|