
- •Требования к машинам. Задачи курса тмм и м
- •Задачи проектирования машин. Критерии и стадии проектирования в ескд. Содержание технического преложения.
- •3. Машины и их классификация.
- •4.Основные сведенья из теории производительности машин.
- •5. Машинный агрегат. Общее устройство.
- •6. Назначение ,устройство и основные виды механизмов
- •7. Строение механизмов. Кинематические пары. Подвижность кинетических пар и механизмов.
- •8. Стадии движения машинного агрегата. Установившееся движение. Энергетическое соотношение. Понятие о кпд механической системы.
- •9. Основы выбора приводного электродвигателя.
- •10. Назначение, основные свойства и виды рычажных механизмов.
- •11.Образование сложных рычажных механизмов.
- •12.Цели и задачи метрического синтеза механизмов. Методы синтеза.
- •13. Порядок синтеза механизмов по критериям производительности машин.
- •14 .Порядок уточнения и поиска параметров механизмов на эвм.
- •15. Назначения и виды передач. Устройство и основные размеры зубчатого колеса.
- •16. Уравнения и свойства эвольвентной боковой поверхности зуба.
- •17. Основной закон в эвольвентном зубчатом зацеплении .Коэффициент перекрытия.
- •18 Кинематика изготовления зубчатых колёс. Способ исправления зубьев. Минимальное число зубьев некорригированного колеса.
- •19. Виды и кинематика зубчатых механизмов с неподвижными осями колёс
- •20. Червячная передача. Устройство, кинематика и синтез.
- •21 .Назначение, виды и устройство эпициклических зубчатых механизмов.
- •22. Кинематика планетарной передачи
- •23. Кинематика дифференциального механизма
- •24. Условия синтеза эпициклических механизмов. Условие соосности.
- •25.Условия соседства в эпициклическом механизме.
- •26 Условие сборки в эпициклическом механизме
- •27 Основы синтеза планетарных передач по методу сомножителей.
- •§ 4. Примеры подбора чисел зубьев для типовых планетарных механизмов
- •28.Управление машинами- автоматами. Виды кулачковых механизмов.
- •29.Цель и порядок составления циклограммы.
- •30. Параметры закона движения кулачкового механизма .Основы выбора.
- •31 Закон равной скорости кулачкового механизма. Преимущества и недостатки
- •32 Закон равной ускорений кулачкового механизма. Преимущества и недостатки
- •33. Синусоидальный и другие законы движения кулачкового мех-ма.
- •34.Угол давления и его связь с основными размерами кулачкового мех-ма.
- •35.Учет угла давления при синтезе кулачкового механизма с поступательным и вращательным движением толкателя.
- •36.Профилирование кулачка по методу обращения движения.
- •37.Обобщённая инертность машинного агрегата.
- •38.Вычисление передаточной функции методами планов и диаграмм.
- •39.Вычисление передаточной функции аналитич. Методом.
- •40.Исследование движения машинного агрегата с помощью диаграммы энергомасс.
- •41.Постановка задачи о регулировании движения машинного агрегата
- •42. Назначение маховика и определение его момента инерции.
- •43. Определение запаса кинетической энергии звеньев машин .
- •44. Цель ,теоретические основы и порядок силового исследования машин. Статистически определяемые кинематические цепи.
- •45. Определение параметров закона движения главного вала машинного агрегата.
- •46. Учет сил инерции звеньев машин.
- •47. Порядок уточнения кпд машины и интенсивность износа кинематических пар.
- •48. Уравнения вращающихся роторов.
- •49. Полное статическое уравновешивание рычажных механизмов
- •50. Частичное статическое уравновешивание рычажных механизмов
- •1. Уравновешивание вертикальной составляющей главного вектора сил инерции.
- •2. Уравновешивание горизонтальной составляющей главного вектора сил инерции.
- •51.Конструкционные примеры уравновешивания машин
- •52.Назначение и способы виброзащиты . Динамическое виброгашение.
- •53. Манипуляторы. Виды систем управления манипуляторами.
- •54. Подвижность и маневренность манипулятора. Структурный синтез.
- •55.Зонаобслуживания.Угол и коэффициент сервиса.
- •56. Кинематика манипулятора по методу преобразования координат
- •57. Решения прямой задачи манипулятора
- •58. Решение обратной задачи манипулятора.
- •59. Динамика манипуляторов
45. Определение параметров закона движения главного вала машинного агрегата.
В зависимости от того какую работу совершают внешние силы машины различают три режима движения: разгон (разбег, пуск), торможение (выбег, останов) и установившееся движение (рис. 12.3).
1,
рад/с Tц
1ср = const
10
0 t, c.
Разгон Установившееся движение Выбег
Рис. 12.3
Установившимся движением механизма называют такое движение, при котором его обобщенная скорость и кинетическая энергия являются периодическими функциями времени. Минимальный промежуток в начале и в конце которого повторяются значения кинетической энергии и обобщенной скорости механизма – называют временем цикла установившегося движения.
Для идеальной механической системы, в которой нет потерь энергии и звенья абсолютно жесткие при получении уравнений движения механизма можно воспользоваться теоремой об изменении кинетический энергии: разность энергии за какой либо промежуток времени равна работе сил за тот же промежуток времени.
,
где Ад.с. – работа движущих сил; Ап.с. – работа сил производственных сопротивлений; Ав.с. – работа сил вредных сопротивлений (трения и внешней среды); АG – работа сил веса.
Для режима разгона: i0 = 0, Ап.с. = 0, тогда:
.
Работа движущих сил при разгоне расходуется кинетическую энергию, работу сил вредных сопротивлений и веса.
При
установившемся движении за каждый цикл
движения работа всех внешних сил равна
нулю
.
Для режима выбега: i = 0, Ад.с. = 0, Ап.с. = 0 тогда:
.
Запасённая кинетическая энергия при выбеге тратится на преодоление работ сил вредных сопротивлений и веса.
Режимы разгона и выбега называют режимами неустановившегося движения.
Уравнение движения механизма в дифференциальном виде
Содержит вторые производные от координат по времени. Изменение кинетической энергии механизма равно приращению работ сил действующих на механизм:
.
В случае если начальное звено совершает вращательное движение:
.
Тогда:
,
,
Преобразуем второе слагаемое с учетом:
.
Подставляя получаем: .
В случае если Jпр = const (маховое колесо, ротор двигателя и т.п.) получаем (второй закон Ньютона для вращательного движения).
46. Учет сил инерции звеньев машин.
Силы инерции звеньев рассматриваются как реакции звена на изменение его скорости по величине и направлению. Существование сил инерции обусловлено двумя обстоятельствами: фактом наличия у звеньев массы и фактом движения звеньев, сопровождающегося в общем случае ускорениями отдельных точек и всего звена в целом, так как известно из теоретической механики, что мерой сил инерции является произведение массы на ускорение.
Из
курса теоретической механики известно,
что систему сил инерции в общем случае
можно привести к силе – главному вектору
сил инерции
приложенного в центре масс s
звена (рис. 11.6) и к паре сил, момент которой
называется главным моментом сил инерции
.
Рис. 11.6
Главный вектор сил инерции определяют по формуле:
.
Главный момент сил инерции определяют по формуле:
,
где m – масса звена, кг; аs – ускорение цента масс, м/с2; Js – момент инерции звена относительно оси проходящей через центр масс перпендикулярной плоскости движения, кг/м2; - угловое ускорение звена, с-2.
Знак «» указывает на то, что векторы и соответственно направлены противоположно аs и .