
- •1. Электрическая цепь и её элементы.
- •2. Источники напряжения.
- •3. Двухполюсные пассивные элементы: резистор, индуктивность, емкость и схемы их замеения.
- •2. Индуктивный элемент (катушка индуктивности)
- •3. Емкостный элемент (конденсатор)
- •4. Система принятых положительных направлений токов и напряжений электротехнике.
- •5. Закон ома.
- •6. Режимы работы электрической цепи.
- •7. Потенциальная диаграмма.
- •8. Расчёт разветвленных электрических цепей с одним источником эдс методом эквивалентных преобразований.
- •9. Взаимное преобразование схем соединения треугольником и звездой пассивных элементов.
- •10. Расчет неразветвленных и разветвленных линейных электрических цепей с несколькими источниками энергии путем непосредственного применения законов кирхгофа.
- •11. Метод суперпозиции.
- •12. Баланс мощностей.
- •13. Понятие о генераторах переменного тока.
- •14. Основные величины, характеризующие синусоидальные напряжения и токи. Начальная фаза. Сдвиг фаз.
- •15. Мгновенное, амплитудное, действующее значения синусоидально изменяющихся электрических величин.
- •16. Параметры и элементы цепей переменного тока.
- •17. Векторные диаграммы.
- •18.Синусоидальный ток в цепи с активным сопротивлением r, индуктивностью l, емкостью c.
- •19.Законы ома и кирхгофа для цепей синусоидального тока.
- •20.Активное, реактивное и полное сопротивление двухполюсника. Треугольник сопротивлений.
- •21. Мощность синусоидального тока. Колебания энергии и мгновенная мощность элементов цепи. Активная, реактивная и полная мощности.
- •23. Выражение мощности в комплексной форме. Баланс мощностей.
- •24. Четырехполюсники. Фильтры.
- •25. Элементарные сведения из физики полупроводников. Собственная и примесная проводимость.
- •26. Свойства p-n перехода.
- •27. Токи в p-n переходе. Прямое и обратное включение p-n перехода.
- •28. Вольтамперная характеристика p-n перехода.
- •29. Пробой p-n перехода. Виды пробоя.
- •30. Полупроводниковые диоды. Классификации диодов.
- •31. Выпрямительные диоды. Выпрямление переменного тока.
- •32. Биполярные транзисторы. Классификация по мощности, диапазону рабочих частот, методу изготовления.
- •33. Схемы включения биполярного транзистора. Режимы его работы.
- •34. Токи биполярного транзистора.
- •2) Усиление мощности
- •3) Частотные свойства транзисторов
- •38. Статические характеристики биполярного транзистора, включенного по схеме с общей базой и общим эмиттером. Влияние температуры на статические характеристики биполярного транзистора.
- •39. Полевые транзисторы.
- •40. Транзисторы с управляющим p-n переходом, его работа, статические характеристики и параметры.
- •41. Транзисторы с изолированным затвором: мдп-транзисторы с встроенным каналом и индуцированным. Их работа, характеристики и параметры.
- •42. Усилители электрических сигналов и их классификация. Основные показатели усилителей. Обратная связь в усилителях.
- •43. Принцип работы усилителя.
- •44. Транзисторные усилители. Смещение на входе. Стабилизация положения рабочей точки.
31. Выпрямительные диоды. Выпрямление переменного тока.
Выпрямитель электрического тока - механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.
Делятся на: однополупериодные (для получения пульсирующего напряжения из переменного используют специальные элементы, обладающие односторонней электропроводностью: полупроводниковые и электровакуумные диоды) и двуполупериодные (для питания радиоаппаратуры, работающие по двухполупериодной схеме).
В основе действия всех устройств такого рода — выпрямителей — лежит применение так называемых электрических вентилей, т. е. приборов, которые пропускают ток в одном направлении и не пропускают его в противоположном направлении. Один из таких вентилей — двухэлектродная лампа с накаленным катодом Если мы включим такую лампу в сеть переменного тока последовательно с нагрузкой, для питания которой нам нужен постоянный ток, то ток будет проходить через цепь только в тот полупериод, когда накаленная нить будет катодом, а холодная пластинка — анодом. В следующий полупериод, когда холодная пластинка служит катодом, а раскаленная нить — анодом, ток проходить не может, потому что испускаемые нитью электроны не будут притягиваться полем к пластинке, а, наоборот, будут отталкиваться обратно к нити. Поэтому ток в нагрузке будет прямым, т. е. направление его меняться не будет.
32. Биполярные транзисторы. Классификация по мощности, диапазону рабочих частот, методу изготовления.
Биполярный транзистор - это полупроводниковый устройство с 2-мя р-n переходами и 3-мя выводами, служащий для усиления мощности. В транзисторе имеется три области - эмиттер (э), база (б) и коллектор (к). Зависимо от типа проводимости этих областей различают транзисторы n-p-n и p-n-p типа. Таковым образом, в транзисторе имеется два p-n перехода: эмиттер-база (эмиттерный) и коллектор-база (коллекторный). Стрелка на условных обозначениях транзисторов (см. сначала главы) показывает направление от p области к n области. Механизм работы обоих типов транзисторов схож. Биполярный транзистор позволяет силой одного тока регулировать силу другого.
По материалу проводника:
- германиевые;
- кремниевые.
По типу проводимости областей:
- с прямой проводимостью (p-n-p);
- с обратной проводимостью (n-p-n).
По мощности они подразделяются на:
маломощные ( Рвых ≤ 0,3 Вт);
средней мощности (0,3 Вт < Рвых ≤ 1,5 Вт);
мощные (Рвых > 1,5 Вт).
По частотным свойствам:
низкочастотные (fα ≤ 0,3 МГц);
средней частоты (0,3 МГц < fα ≤ 3 МГц);
высокой частоты (3 МГц < fα ≤ 30 МГц);
сверхвысокой частоты (fα > 30 МГц).
33. Схемы включения биполярного транзистора. Режимы его работы.
Существует три основные схемы включения транзисторов. При этом один из электродов транзистора является общей точкой входа и выхода каскада. Надо помнить, что под входом (выходом) понимают точки, между которыми действует входное (выходное) переменное напряжение. Основные схемы включения называются схемами с общим эмиттером (ОЭ), общей базой (ОБ) и общим коллектором (ОК).
Схема с общим эмиттером (ОЭ). Такая схема изображена на рисунке 1. Во всех книжках написано, что эта схема является наиболее распространненой, т. к. дает наибольшее усиление по мощности.
Рис.
1 - Схема включения транзистора с общим
эмиттером
Схема с общей базой (ОБ). Схема ОБ изображена на рисунке 2.
Рис.
2 - Схема включения транзистора с общей
базой
Схема с общим коллектором (ОК). Схема включения с общим коллектором показана на рисунке 3. Такая схема чаще называется эмиттерным повторителем.
Рис.
3 - Схема включения транзистора с общим
коллектором.
В зависимости от сочетания знаков и значений напряжений на p-n-переходах транзистора различают следующие режимы его работы:
а) активный режим – на эмиттерный переход подано прямое напряжение, а на коллекторный переход – обратное;
б) режим отсечки – на оба перехода поданы обратные напряжения (транзистор заперт);
в) режим насыщения – на оба перехода поданы прямые напряжения (транзистор полностью открыт);
г) инверсный активный режим – напряжение на эмиттерном переходе обратное, на коллекторном – прямое.
Режимы отсечки и насыщения характерны для работы транзистора в качестве электронного ключа; активный режим используют при работе транзистора в усилителях. Инверсное включение используется редко, например, в схемах двунаправленных переключателей, при этом транзисторы должны иметь симметричные свойства в обоих направлениях.