
- •Основы химической термодинамики и биоэнергетики.
- •Основные понятия и определение термодинамики.
- •Первый закон термодинамики.
- •Тепловые эффекты химических реакций. Термохимические уравнения.
- •Законы термохимии
- •Теплоемкость. Зависимость тепловых эффектов химических реакций от температуры
- •Второй и третий законы термодинамики. Энтропия. Термодинамические потенциалы Второй закон термодинамики
- •Энтропия
- •Третий закон термодинамики
- •Термодинамические потенциалы
- •1.Организм является открытой системой, которая непрерывно обменивается с
- •Атф как источник энергии для биохимических реакций
- •Глава 2 кинетика биохимических реакций
- •Скорость химических реакций
- •Порядок и молекулярность реакций
- •Зависимость скорости реакции от температуры Правило Вант-Гоффа
- •Катализ и катализаторы
- •Строение ферментов
- •Металлоферменты
- •Глава 3
- •Растворы электролитов.
- •Электролиты в организме человека.
- •Электропроводность растворов: удельная, молярная, предельная.
- •Типы проводников электрического тока.
- •Глава 4. Електродні потенціали та механизм їх виникнення.
- •Визначення стандартних електродних потенціалів.
- •Класифікація електродів.
- •Окисно-відновні електроди
- •Йонселективні електроди
- •Глава 5 Адсорбционное равновесие и процессы на подвижных и неподвижных границах деления фаз.
- •Самопроизвольные процессы на границе деления фаз.
- •Строение биологических мембран
- •Адсорбция на границе деления твердое тело – раствор.
- •Глава 6 Адсорбция электролитов
- •Получение, очистка и свойства коллоидных растворов
- •Классификация и общие свойства дисперсных систем
- •Методы получения коллоидных систем
- •Конденсационные методы
- •Методы очистки коллоидных растворов
- •Диализ.
- •Электрокинетические явления в коллоидных системах
- •Стойкость и коагуляция коллоидных систем
- •Класифікація високомолекулярних сполук
- •Властивості високомолекулярних сполук
- •Розчини вмс, їх одержання і загальні властивості.
Законы термохимии
самым важным выводом из первого закона термодинамики относительно химии является закон, открытый в 1840 г. русским ученым Г. Гессом: тепловой эффект химической реакции не зависит от пути ее протекания, а определяется только начальным и конечным состояниями системы.
Например, сжигая графит в кислороде, можно получить оксид углерода (IV) непосредственно:
С(графит)+ О2г= С02(г); ∆Н = -393,5 кДж
или по стадиям:
С(графит)+ 1/202(r)= СОг; ∆Н1 = -110,5 кДж;
CO(r) + 1/202 (r) = C02(r); ∆Н2 = -283,0 кДж.
Общий тепловой эффект в обоих случаях будет одинаков:
∆Н = ∆Н1 + ∆Н2 = -393,5 кДж.
Следовательно, для экспериментального определения теплового эффекта какого-то сложного химического процесса нет надобности определять тепловые эффекты каждой стадии. Это имеет исключительно большое значение для биологических процессов, которые являются сложными. Так, глюкоза, основной энергетический материал организма человека и животных, испытывает в мышцах сложные превращения, образовывая конечные продукты окисления - углекислый газ и воду. В термохимических вычислениях, в частности для определения калорийности пищевых продуктов, достаточно знать тепловой эффект суммарной реакции:
С6Н12О6 + 602 = 6Н20 + 6СО2; ∆Н ° = -2802,8 кДж
не определяя тепловые эффекты многих промежуточных реакций.
Большое значение в термохимических вычислениях имеют следствия, которые вытекают из закона Гесса.
Первое следствие. Энтальпия разложения любого химического соединения равняется энтальпии ее образования по абсолютной величине и противоположная по знаку (это следствие иначе называют законом Лавуазье - Лапласа). Это утверждение непосредственно вытекает из того, что тепловой эффект кругового процесса должен равняться нулю.
Второе следствие. Тепловой эффект реакции равняется разнице алгебраических сумм энтальпий образования продуктов реакции и исходных веществ.
Третье следствие. Тепловой эффект реакции равняется разнице алгебраических сумм энтальпий сгорания исходных веществ и продуктов реакции.
Кроме приведенных выше следствий из закона Гесса, для термохимических вычислений используют еще и такие:
а) если две реакции имеют одинаковые продукты, но разные исходные вещества, то разница между тепловыми эффектами этих реакций является тепловым эффектом перехода одного исходного вещества в другое.
Таким образом, применяя закон Гесса, можно вычислить тепловые эффекты отдельных реакций, особенно промежуточных стадий, которые экспериментальным путем определить невозможно.
Кроме того, закон Гесса дает возможность определить тепловые эффекты других химических процессов, например, гидратации ∆Н гидрат, нейтрализации ∆Н нейтр. и тому подобное.
Определение теплоты гидратации. Количество теплоты, которая выделяется при присоединении к одному молю твердой безводной соли соответствующего количества кристаллической воды до образования стойкого кристаллогидрата, называют теплотой гидратации. Ее вычисляют по разнице энтальпий растворения безводной соли и соответствующего кристаллогидрата.
Энтальпией растворения называют количество теплоты, которая выделяется или поглощается при растворении одного моля вещества в большом количестве растворителя (200-500 моль).
Энтальпия реакции нейтрализации - это тепловой эффект реакции нейтрализации молярной массы эквивалента кислоты (основания) соответствующим количеством основания (кислоты).