
- •1. Атом, его составные части (ядро, протоны, нейтроны, электроны), их заряд, масса. Химический элемент. Изотопы.
- •2. Характеристики энергетического состояния электрона квантовыми числами, атомные орбитали. Принцип наименьшей энергии. Принцип Паули. Правило Хунда.
- •3. Периодический закон д.И.Менделеева. Структура периодической системы: периоды, группы, подгруппы. Особенности электронного строения атомов главных и побочных подгрупп.
- •4. Периодически и непериодически изменяющиеся свойства элементов. Энергия ионизации, сродство к электрону. Электроотрицательность.
- •5. Изменение свойств элементов в периодической системе
- •6. Периодическая система элементов и ее связь со строением атома. S-, p-, d-, f- элементы.
- •7. Ковалентная связь. Основные положения метода валентных связей. Свойства ковалентной связи: направленность, насыщенность Сигма и -связь.
- •8. Ионная связь как крайний случай поляризации ковалентной связи. Ненаправленность и ненасыщенность ионной связи.
- •9. Гибридизация атомных орбиталей. Типы гибридизации и структура молекул.
- •10. Полярная и неполярная ковалентная связь. Полярность молекул. Электрический момент диполя.
- •11. Метод валентных связей для объяснения химической связи в комплексных соединениях. Магнитные свойства комплексных ионов.
- •12. Межмолекулярное взаимодействие (дисперсионное, ориентационное, индукционное). Водородная связь. Влияние водородной связи на свойства веществ. Донорно-акцепторное взаимодействие.
- •13. Типы кристаллических решеток, и их влияние на свойства веществ.
- •14. Скорость реакции в гомогенной системе. Факторы, влияющие на скорость реакции. Константа скорости реакции. Закон действия масс. Скорость реакции в гетерогенной системе.
- •15. Энергия активации. Зависимость скорости от температуры. Правило Вант-Гоффа.
- •16. Катализ гомогенный, гетерогенный, ферметативный. Понятие о механизме каталитических процессов.
- •17.Обратимые и необратимые процессы. Химическое равновесие. Константа равновесия.
- •18. Смещение химического равновесия. Принцип Ле-Шателье. Влияние температуры, давления и концентрации реагентов на равновесие.
- •19. Растворы как многокомпонентные системы. Гидратная теории растворов д.И. Менделеева. Различные способы выражения концентрации растворов.
- •20. Электролитическая диссоциация. Зависимость диссоциации от характера связей в молекулах электролитов. Соли, кислоты, основания.
- •21 Ионные реакции.
- •22. Сила электролитов. Степень диссоциации. Константы диссоции. Закон разведения Оствальда.
- •23 Малорастворимые вещества. Произведение растворимости. Условие осаждения малорастворимого электролита. Переосаждение.
- •24.Электролитическая ионизация воды. Водородный показатель pH. Индикаторы. Понятие о буферных растворах.
- •26. Комплексообразование в растворах. Структура комплексного соединения. Классификация комплексных соединений.
- •27 Диссоциация комплексных соединений в растворе.
- •25.Гидролиз.Различные случаи гидролиза солей. Степень гидролиза. Константа гидролиза. Влияние температуры на степень гидролиза. Необратимый гидролиз.
- •28. Свойства элементов 8 в подгруппы.Степень окисления. Общая характеристика элементов.Соли простые и комплексные.
- •29 Элементы VII а подгруппы.
- •30. Элементы 6 а группы. Общая характеристика. Водородные соединения.Оксиды и гидроксиды серыселена,теллура.Сравнение свойств селена и теллура со свойствами кислот серы
- •31 Элементы IV а подгруппы.
- •32. Элементы III a подгруппы. Общая характеристика. Степени окисления. Оксиды и гидроксиды. Соли (простые и комплексные)
- •33. Элементы iia подгруппы. Общая характеристика элементов. Степени окисления. Гидриды, оксиды.
- •34. Элементы ia подгруппы. Щелочные металлы. Общая характеристика. Гидроксиды, пероксиды, супероскиды, гидроксиды (щелочи). Соли.
- •35.Кислород. Общая харарктеристика элемента. Озон, свойства и применение. Вода. Пероксид водорода и его свойства (кислотные, окислительные и восстановительные).
- •36. Хлор. Хлороводород. Соляная кислота. Кислородные соединения хлора. Сопоставление кислотных и окислительных свойств кислородосодержащих кислот
- •39. Азот. Степени окисления. Химическая инертность азота. Применение азота для хранения пищевых продуктов.
- •38.Сера. Кислородные соединения.Оксид серы (4).Серинистая кислота и ее соли.
- •41.Фосфор . Общая характеристика элемента. Оксиды фосфора (3,5),соответствующие кислоты. Соли фосфорной кислоты и их растворимость, гидролизуемость.
- •42. Углерод. Общая характеристика. Оксиды углерода. Угольная кислота и ее соли.
- •44. Свинец. Общая характеристика. Отношение к кислотам и щелочам. Оксид и гидроксид свинца (II). Соли свинца (II). Оксид свинца (IV), его окислительные свойства.
- •45.Алюминий. Общая характеристика.Отношение алюминия к кислотам и щелочам. Оксид и гидроксид алюминия.Соли и их астворимость и гидролизуемость.
- •46. Железо. Общая характеристика. Оксид и гидроксид железа (II) и (III). Соли железа: простые комплексные.
- •47. Хром.Общая характеристика,степени окисления.Оксиды и гидроксиды хрома(2,3,6). Соли хрома катионного и анионного типа. Хроматы и дихроматы.
- •49.Медь. Общая характеристика .Отношение к кислотам. Степени окисления.Оксиды и гидроксиды.Соли меди 2 простые и комплексные.
- •50. Цинк. Общая характеристика. Отношение к кислотам. Степени окисления. Оксид, гидроксид. Соли цинка (простые и комплексные).
17.Обратимые и необратимые процессы. Химическое равновесие. Константа равновесия.
Процесс называют обратимым, если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимую в обратном порядке. Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы диффузия, теплопроводность, Равновесие химическое, состояние системы, в которой обратимо протекает одна или несколько реакций химических,причём для каждой из них скорости прямой и обратной реакций равны, вследствие чего состав системы остаётся постоянным, пока сохраняются условия её существования.
Способы изменения направления протекания реакции:
1. Давление. Увеличение давления (для газов) смещает равновесие в сторону реакции, ведущей к уменьшению объема (т.е. к образованию меньшего числа молекул).
2. Увеличение температуры смещает положение равновесия в сторону эндотермической реакции (т.е. в сторону реакции, протекающей с поглощением теплоты)
3. Увеличение концентрации исходных веществ и удаление продуктов из сферы реакции смещает равновесие в сторону прямой реакции. Увеличение концентраций исходных веществ [A] или [Б] или [А] и [Б]: V1 > V2.
4. Катализаторы не влияют на положение равновесия.
Конста́нта равнове́сия — величина, определяющая для данной химической реакции соотношение между термодинамическими активностями (либо, в зависимости от условий протекания реакции, парциальными давлениями, концентрациями или фугитивностями) исходных веществ и продуктов в состоянии химического равновесия (в соответствии с законом действующих масс). Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.
Для реакции в смеси идеальных газов константа равновесия может быть выражена через равновесные парциальные давления компонентов pi по формуле[1]:
где νi — стехиометрический
коэффициент (для
исходных веществ принимается
отрицательным, для продуктов —
положительным). Kp не
зависит от общего давления, от исходных
количеств веществ или от того, какие
участники реакции были взяты в качестве
исходных, но зависит от температуры [2].
Например, для
реакции окисления монооксида
углерода:
2CO + O2 =
2CO2 константа
равновесия может быть рассчитана по
уравнению:
Если реакция протекает в идеальном
растворе и
концентрация компонентов выражена
через молярность ci,
константа равновесия принимает вид:
18. Смещение химического равновесия. Принцип Ле-Шателье. Влияние температуры, давления и концентрации реагентов на равновесие.
Химическое равновесие — состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причём скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем.
А2 + В2 ⇄ 2AB
Современная формулировка принципа Ле-Шателье такова: Если на систему, находящуюся в состоянии равновесия, оказать внешнее воздействие, то система перейдет в другое состояние так, чтобы уменьшить эффект внешнего воздействия.
1. Влияние температуры. В каждой обратимой реакции одно из направлений отвечает экзотермическому процессу, а другое - эндотермическому. N2 + 3H2 = 2NH3 +Q Прямая реакция - экзотермическая, а обратная реакция - эндотермическая. Влияние изменения температуры на положение химического равновесия подчиняется следующим правилам: При повышении температуры химическое равновесие смещается в направлении эндотермической реакции, при понижении температуры - в направлении экзотермической реакции.
2. Влияние
давления. Во
всех реакциях с участием газообразных
веществ, сопровождающихся изменением
объема за счет изменения количества
вещества при переходе от исходных
веществ к продуктам, на положение
равновесия влияет давление в системе.
Влияние давления на положение равновесия
подчиняется следующим правилам: При
повышении давления равновесие сдвигается
в направлении образования веществ
(исходных или продуктов) с меньшим
объемом; при понижении давления
равновесие сдвигается в направлении
образования веществ с большим
объемом
Таким
образом, при переходе от исходных
веществ к продуктам объем газов
уменьшился вдвое. Значит, при повышении
давления равновесие смещается в сторону
образования NH3.
3. Влияние концентрации. Влияние концентрации на состояние равновесия подчиняется следующим правилам: При повышении концентрации одного из исходных веществ равновесие сдвигается в направлении образования продуктов реакции; при повышении концентрации одного из продуктов реакции равновесие сдвигается в направлении образования исходных веществ.