
- •Оглавление
- •I Трансформаторы……………………………………………..………………………... 6
- •III Машины постоянного тока……………………….………………………………...….71
- •I Трансформаторы
- •Устройство трансформатора
- •1.1.1. Шихтовка железа стержневого трансформатора
- •1.2.Однофазные трансформаторы. Холостой ход однофазного трансформатора
- •1.2.1.Ток холостого хода
- •1.2.2.Потери при холостом ходе трансформатора
- •1.2.3.Схема замещения трансформатора при холостом ходе
- •1.2.4.Определение параметров экспериментально zm, xm,rm
- •1.3. Работа однофазного трансформатора под нагрузкой
- •1.3.1 Физические процессы в трансформаторе при нагрузке
- •1.3.2. Векторная диаграмма трансформатора при нагрузке
- •1.3.3. Схема замещения трансформатора при нагрузке
- •Режим короткого замыкания однофазного трансформатора
- •Векторная диаграмма трансформатора при коротком замыкании
- •Потери при коротком замыкании
- •1.4.3. Экспериментальное определение параметров короткого замыкания
- •Треугольник короткого замыкания
- •Совмещение режимов
- •Трехфазные трансформаторы
- •Группы соединения трансформаторов
- •Холостой ход трехфазного трансформатора
- •1.7.1. Соединение обмоток трансформатора /
- •1.7.2. Соединение обмоток трансформатора /
- •1.8. Параллельная работа трансформаторов
- •1.8.1. Параллельная работа трансформаторов при неравенстве коэффициентов трансформации
- •1.8.2. Параллельная работа трансформаторов при неравенстве напряжений короткого замыкания
- •1.8.3. Параллельная работа трансформаторов с различными группами соединения
- •1.9. Переходные режимы трансформаторов
- •Переходный процесс при включении трансформатора в холостую
- •Переходный процесс при коротком замыкании трансформатора
- •Переходные процессы, вызванные перенапряжением
- •II Асинхронные машины
- •2.1. Устройство и принцип действия асинхронного двигателя
- •2.1.1. Принцип создания вращающего магнитного поля статорной обмоткой
- •2.1.2. Принцип действия асинхронного двигателя
- •2.2. Общие вопросы машин переменного тока
- •Обмотки машин переменного тока
- •2.2.1. Обмотки машин переменного тока
- •Элементы обмоток переменного тока
- •Пример выполнения однослойной обмотки
- •2.2.2. Электродвижущая сила (эдс) обмотки машин переменного тока
- •2.2.3. Намагничивающая сила обмоток машин переменного тока
- •2.3. Рабочий процесс асинхронного двигателя
- •2.3.1. Режимы работы асинхронной машины
- •2.3.2. Режим двигателя
- •2.3.3. Трехфазная асинхронная машина при вращающемся роторе
- •2.3.4. Привидение параметров роторной обмотки к статорной
- •2.3.5. Приведение асинхронного двигателя к эквивалентному трансформатору
- •Запишем выражение для тока ротора
- •2.3.6. Схема замещения роторной цепи
- •2.3.7. Векторная диаграмма асинхронного двигателя
- •2.3.8. Схемы замещения асинхронной машины
- •2.4. Вращающий момент асинхронной машины
- •2 .4.1. Вращающий (электромагнитный) момент асинхронной машины
- •2.4.2. Максимальный (критический) момент
- •Знак - - соответствует генераторному режиму
- •2.4.3. Расчетная формула момента
- •2.4.4. Влияние высших гармоник магнитного поля на работу асинхронной машины
- •Задавшись током i1
- •2.6. Пуск трехфазных асинхронных двигателей
- •Прямой пуск асинхронных двигателей простой и нет необходимости в дополнительной аппаратуре.
- •2 .6.3. Пуск двигателя с фазным ротором
- •2.7. Асинхронные двигатели с обмоткой ротора специального исполнения
- •2.7.1. Короткозамкнутый асинхронный двигатель с глубоким пазом на роторе
- •Кратность пускового тока
- •2.7.2. Короткозамкнутый асинхронный двигатель с двойной клеткой на роторе
- •2.8. Регулирование частоты вращения асинхронных двигателей
- •2.8.1. Регулирование частоты вращения двигателя изменением частоты
- •2.8.2. Регулирование частоты вращения двигателя путем изменения числа пар полюсов
- •2.8.3. Регулирование частоты вращения двигателя сопротивлением в цепи ротора (с фазным ротором)
- •2.8.4. Регулирование частоты вращения изменением подводимого напряжения
- •2.9. Асинхронная машина в качестве генератора
- •Докажем это аналитически. Ток в роторе
- •2.9.1. Векторная диаграмма асинхронного генератора
- •2.9.2. Однофазный двигатель
- •III Машины постоянного тока
- •3.1. Устройство и принцип действия машин постоянного тока
- •3.2. Обмотки якоря машин постоянного тока
- •Основные требования, предъявляемые к обмотке
- •3.2.2. Простая волновая обмотка
- •3.2.3. Сложно-петлевая обмотка
- •3.2.4. Сложно-волновые обмотки
- •3.2.5. Симметрия обмоток
- •3.2.6. Смешанная (лягушечья) обмотка
- •3.3. Эдс обмотки якоря
- •3.4. Реакция якоря в машинах постоянного тока
- •3.5. Генераторы постоянного тока
- •Энергетическая диаграмма генератора независимого возбуждения.
- •Электромагнитный момент генератора постоянного тока
- •3.5.1. Генератор независимого возбуждения
- •Свойства генератора определяются его характеристиками. 1.Характеристика холостого хода: , ,
- •3 .5.2. Генератор параллельного возбуждения
- •3.5.3. Генератор последовательного возбуждения
- •3.5.4. Генератор смешанного возбуждения г енератор смешанного возбуждения широко используется в промышленности. Обмотки возбуждения по потоку могут быть включены согласно, либо встречно, рис. 35.
- •3.6. Двигатели постоянного тока
- •3.6.1. Энергетическая диаграмма двигателя постоянного тока
- •3.6.2. Пуск двигателей постоянного тока
- •3.6.3. Реверсирование двигателя постоянного тока
- •3.6.4. Классификация двигателей постоянного тока
- •Принципиальная схема включения двигателя параллельного возбуждения представлена на рис. 43. Для пуска используется пусковой реостат (п. Р.). Свойства двигателя определяются его характеристиками.
- •О сновное уравнение движения электропривода
- •3.6.5. Регулирование частоты вращения двигателей постоянного тока
- •3.Регулирование частоты вращения изменением подводимого напряжения.
- •3 .7. Коммутация двигателя
- •3.7.1 Закон изменения тока в коммутируемой секции
- •3.7.2. Прямолинейная коммутация
- •3.7.3. Замедленная коммутация
- •3.7.4. Ускоренная коммутация
- •3.7.5. Определение реактивной эдсer
- •3.7.6. Способы улучшения коммутации
- •3.7.7. Круговой огонь в машинах постоянного тока
- •IV Синхронные машины
- •4.1. Назначение, устройство и принцип действия
- •4.2. Работа генератора при холостом ходе
- •4.3. Реакция якоря в синхронном явнополюсном генераторе
- •4.3.1. Реакция якоря при активной нагрузке
- •4.3.2. Реакция якоря при индуктивной нагрузке
- •4.3.3. Реакция якоря при емкостной нагрузке
- •4.3.4. Реакция якоря при смешанной нагрузке
- •4.4. Магнитное рассеяние
- •4.5. Рабочий процесс синхронной машины
- •4.5.1. Основная диаграмма эдс явнополюсного синхронного генератора
- •4.5.2. Преобразованная диаграмма эдс явнополюсной синхронной машины
- •4.6. Определение параметров синхронной машины по снятым характеристикам
- •4.6.1. Определение индуктивного ненасыщенного сопротивления Xd
- •4.6.2. Определение параметра Xd насыщенного
- •4.6.3. Определение параметра Xq
- •4.6.4. Определение параметров Xq и Xd методом скольжения
- •4.6.5. Определение параметра Xs
- •4.7. Понятие о сверхпереходных и переходных индуктивных сопротивлениях
- •4.8. Диаграммы намагничивающих сил
- •4.9. Параллельная работа синхронных генераторов
- •4.9.1. Параллельная работа генераторов при неравенстве напряжений
- •4.9.2. Параллельная работа генераторов при неравенстве частот
- •4.10. Синхроноскопы
- •4.10.1. Включение генератора параллельно сети на погасание ламп
- •4.10.2. Включение генератора параллельно сети на бегущий свет
- •4.11. Электромагнитная мощность и момент синхронных машин
- •4.12. Режимы работы синхронной машины параллельно с сетью
- •Методы регулирования реактивной и активной мощности генератора.
- •4.13. Синхронные двигатели
- •4.13.1. Векторные диаграммы синхронного двигателя
- •4.13.2 Угловые характеристики синхронного двигателя
- •4.13.3. Режим работы синхронного двигателя при постоянном моменте и переменном токе возбуждения
- •4.13.4. Пуск синхронного двигателя
- •Список литературы
4.10.2. Включение генератора параллельно сети на бегущий свет
Рис. 29. Рис. 30.
При таком включении ламп синхроноскопа лампы находятся под разным потенциалом, рис 30. Если турбина имеет малое число оборотов, то частота ЭДС СГ мала и относительная скорость сплошной и пунктирной звезд будет большой. Вращение загорания ламп будет быстрое. По мере увеличения скорости вращения частота будет расти СГ, а относительная скорость звезд будет уменьшаться, и вращение бегущего света будет замедляться. При скорости вращения близкой к синхронной относительная скорость звезд будет малой и бегущий огонь будет медленно переходить с одной лампы на другую (например, по часовой стрелке) и когда лампа А фазы А потухнет, в этот момент быстро необходимо включить рубильник. Р.
Если, не включая рубильник, и дальше разгонять ротор СГ, то пунктирная звезда будет вращаться быстрее сплошной и бегущий свет изменит свое направление (против часовой стрелки).
На промышленных установках обычно используются стрелочные синхроноскопы. Эта синхронизация называется точной. На электростанциях часто используют грубую синхронизацию, так называемую самосинхронизацию. Идея сводится к следующему: турбина разгоняет ротор СГ до скорости близкой к синхронной, после чего включают обмотку статора в сеть (получается как бы асинхронный режим), затем с небольшой выдержкой времени подают напряжение на обмотку возбуждения, которая создает магнитный поток. Так как при этом относительная скорость поля статора и поля обмотки возбуждения мала, то после ряда проскальзываний противоположные полюса статора и индуктора притянутся, и машина втянется в синхронизм. После чего синхронный генератор можно нагружать.
4.11. Электромагнитная мощность и момент синхронных машин
Электромагнитная мощность – это мощность, которая передается с индуктора на статорную обмотку. Так как потери в обмотке статора, как правило, невелики, то и невелики потери в стали статора. Поэтому практически считают, что электромагнитная мощность равна полезной отдаваемой мощности:
Рэм = Рr = mUIcosφ, r = 0 (1)
Для вывода формулы электромагнитной мощности воспользуемся преобразованной диаграммой для явнополюсной машины, рис. 30.
Рис. 30
Выразим угол φ через ψ и θ.
Из диаграммы видно, что
cosφ=cos(ψ-θ)=cosψcosθ+sinψsinθ
Подставим cosφ в уравнение (1) электромагнитной мощности
Pэм = mUIcosψcosθ+mUIsinψsinθ (2)
Найдем из векторной диаграммы величины Icosψ, Isinψ
OB=E0–IdXd=E0–IsinψXd, с другой стороны:
OB=Ucosθ, Ucosθ=E0–IsinψXd, откуда
,
далее
BC = IqXq =
IcosψXq = Usinθ,
откуда
Подставим произведение Isinψ и Icosψ в уравнение (2)
,
сгруппируем
.
Воспользуемся формулой sin2θ=2cosθsinθ, откуда
cosθsinθ=1/2sin2θ, тогда окончательно получим выражение электромагнитной мощности синхронного генератора (явнополюсн.)
Pэм = mUE0sinθ/Xd
+
mU2(1/Xq
– 1/Xd)sin2θ,
т.е. электромагнитная мощность состоит из основной и добавочной. Если машина неявнополюсная, где Xd=Xq, выражение электромагнитной мощности запишется:
Pэм = mUE0sinθ/Xd
Получим выражение электромагнитного момента для явнополюсной машины. Так как Pэм = Mω, откуда M = Pэм/ω,
, т.е. момент состоит из основной части и добавочного (реактивного) момента. Если генератор неявнополюсной, то выражение электромагнитного момента запишется:
M = mUE0sinθ/ωXd
Зависимости Pэм=f(θ) и M = f(θ) называются угловыми характеристиками синхронной машины. Покажем на рис. 31 угловые харθактеристики для явнополюсного генератора, а на рис. 32 угловые характеристики для неявнополюсной машины.
Рис. 31 Рис. 32
Из рис. 31 видно, что θкр<900. Устойчиво машина работает в диапазоне угла θ = 0-θкр, а для неявнополюсной машины устойчивая работа соответствует углу θ = (0-90)0.