
- •Оглавление
- •I Трансформаторы……………………………………………..………………………... 6
- •III Машины постоянного тока……………………….………………………………...….71
- •I Трансформаторы
- •Устройство трансформатора
- •1.1.1. Шихтовка железа стержневого трансформатора
- •1.2.Однофазные трансформаторы. Холостой ход однофазного трансформатора
- •1.2.1.Ток холостого хода
- •1.2.2.Потери при холостом ходе трансформатора
- •1.2.3.Схема замещения трансформатора при холостом ходе
- •1.2.4.Определение параметров экспериментально zm, xm,rm
- •1.3. Работа однофазного трансформатора под нагрузкой
- •1.3.1 Физические процессы в трансформаторе при нагрузке
- •1.3.2. Векторная диаграмма трансформатора при нагрузке
- •1.3.3. Схема замещения трансформатора при нагрузке
- •Режим короткого замыкания однофазного трансформатора
- •Векторная диаграмма трансформатора при коротком замыкании
- •Потери при коротком замыкании
- •1.4.3. Экспериментальное определение параметров короткого замыкания
- •Треугольник короткого замыкания
- •Совмещение режимов
- •Трехфазные трансформаторы
- •Группы соединения трансформаторов
- •Холостой ход трехфазного трансформатора
- •1.7.1. Соединение обмоток трансформатора /
- •1.7.2. Соединение обмоток трансформатора /
- •1.8. Параллельная работа трансформаторов
- •1.8.1. Параллельная работа трансформаторов при неравенстве коэффициентов трансформации
- •1.8.2. Параллельная работа трансформаторов при неравенстве напряжений короткого замыкания
- •1.8.3. Параллельная работа трансформаторов с различными группами соединения
- •1.9. Переходные режимы трансформаторов
- •Переходный процесс при включении трансформатора в холостую
- •Переходный процесс при коротком замыкании трансформатора
- •Переходные процессы, вызванные перенапряжением
- •II Асинхронные машины
- •2.1. Устройство и принцип действия асинхронного двигателя
- •2.1.1. Принцип создания вращающего магнитного поля статорной обмоткой
- •2.1.2. Принцип действия асинхронного двигателя
- •2.2. Общие вопросы машин переменного тока
- •Обмотки машин переменного тока
- •2.2.1. Обмотки машин переменного тока
- •Элементы обмоток переменного тока
- •Пример выполнения однослойной обмотки
- •2.2.2. Электродвижущая сила (эдс) обмотки машин переменного тока
- •2.2.3. Намагничивающая сила обмоток машин переменного тока
- •2.3. Рабочий процесс асинхронного двигателя
- •2.3.1. Режимы работы асинхронной машины
- •2.3.2. Режим двигателя
- •2.3.3. Трехфазная асинхронная машина при вращающемся роторе
- •2.3.4. Привидение параметров роторной обмотки к статорной
- •2.3.5. Приведение асинхронного двигателя к эквивалентному трансформатору
- •Запишем выражение для тока ротора
- •2.3.6. Схема замещения роторной цепи
- •2.3.7. Векторная диаграмма асинхронного двигателя
- •2.3.8. Схемы замещения асинхронной машины
- •2.4. Вращающий момент асинхронной машины
- •2 .4.1. Вращающий (электромагнитный) момент асинхронной машины
- •2.4.2. Максимальный (критический) момент
- •Знак - - соответствует генераторному режиму
- •2.4.3. Расчетная формула момента
- •2.4.4. Влияние высших гармоник магнитного поля на работу асинхронной машины
- •Задавшись током i1
- •2.6. Пуск трехфазных асинхронных двигателей
- •Прямой пуск асинхронных двигателей простой и нет необходимости в дополнительной аппаратуре.
- •2 .6.3. Пуск двигателя с фазным ротором
- •2.7. Асинхронные двигатели с обмоткой ротора специального исполнения
- •2.7.1. Короткозамкнутый асинхронный двигатель с глубоким пазом на роторе
- •Кратность пускового тока
- •2.7.2. Короткозамкнутый асинхронный двигатель с двойной клеткой на роторе
- •2.8. Регулирование частоты вращения асинхронных двигателей
- •2.8.1. Регулирование частоты вращения двигателя изменением частоты
- •2.8.2. Регулирование частоты вращения двигателя путем изменения числа пар полюсов
- •2.8.3. Регулирование частоты вращения двигателя сопротивлением в цепи ротора (с фазным ротором)
- •2.8.4. Регулирование частоты вращения изменением подводимого напряжения
- •2.9. Асинхронная машина в качестве генератора
- •Докажем это аналитически. Ток в роторе
- •2.9.1. Векторная диаграмма асинхронного генератора
- •2.9.2. Однофазный двигатель
- •III Машины постоянного тока
- •3.1. Устройство и принцип действия машин постоянного тока
- •3.2. Обмотки якоря машин постоянного тока
- •Основные требования, предъявляемые к обмотке
- •3.2.2. Простая волновая обмотка
- •3.2.3. Сложно-петлевая обмотка
- •3.2.4. Сложно-волновые обмотки
- •3.2.5. Симметрия обмоток
- •3.2.6. Смешанная (лягушечья) обмотка
- •3.3. Эдс обмотки якоря
- •3.4. Реакция якоря в машинах постоянного тока
- •3.5. Генераторы постоянного тока
- •Энергетическая диаграмма генератора независимого возбуждения.
- •Электромагнитный момент генератора постоянного тока
- •3.5.1. Генератор независимого возбуждения
- •Свойства генератора определяются его характеристиками. 1.Характеристика холостого хода: , ,
- •3 .5.2. Генератор параллельного возбуждения
- •3.5.3. Генератор последовательного возбуждения
- •3.5.4. Генератор смешанного возбуждения г енератор смешанного возбуждения широко используется в промышленности. Обмотки возбуждения по потоку могут быть включены согласно, либо встречно, рис. 35.
- •3.6. Двигатели постоянного тока
- •3.6.1. Энергетическая диаграмма двигателя постоянного тока
- •3.6.2. Пуск двигателей постоянного тока
- •3.6.3. Реверсирование двигателя постоянного тока
- •3.6.4. Классификация двигателей постоянного тока
- •Принципиальная схема включения двигателя параллельного возбуждения представлена на рис. 43. Для пуска используется пусковой реостат (п. Р.). Свойства двигателя определяются его характеристиками.
- •О сновное уравнение движения электропривода
- •3.6.5. Регулирование частоты вращения двигателей постоянного тока
- •3.Регулирование частоты вращения изменением подводимого напряжения.
- •3 .7. Коммутация двигателя
- •3.7.1 Закон изменения тока в коммутируемой секции
- •3.7.2. Прямолинейная коммутация
- •3.7.3. Замедленная коммутация
- •3.7.4. Ускоренная коммутация
- •3.7.5. Определение реактивной эдсer
- •3.7.6. Способы улучшения коммутации
- •3.7.7. Круговой огонь в машинах постоянного тока
- •IV Синхронные машины
- •4.1. Назначение, устройство и принцип действия
- •4.2. Работа генератора при холостом ходе
- •4.3. Реакция якоря в синхронном явнополюсном генераторе
- •4.3.1. Реакция якоря при активной нагрузке
- •4.3.2. Реакция якоря при индуктивной нагрузке
- •4.3.3. Реакция якоря при емкостной нагрузке
- •4.3.4. Реакция якоря при смешанной нагрузке
- •4.4. Магнитное рассеяние
- •4.5. Рабочий процесс синхронной машины
- •4.5.1. Основная диаграмма эдс явнополюсного синхронного генератора
- •4.5.2. Преобразованная диаграмма эдс явнополюсной синхронной машины
- •4.6. Определение параметров синхронной машины по снятым характеристикам
- •4.6.1. Определение индуктивного ненасыщенного сопротивления Xd
- •4.6.2. Определение параметра Xd насыщенного
- •4.6.3. Определение параметра Xq
- •4.6.4. Определение параметров Xq и Xd методом скольжения
- •4.6.5. Определение параметра Xs
- •4.7. Понятие о сверхпереходных и переходных индуктивных сопротивлениях
- •4.8. Диаграммы намагничивающих сил
- •4.9. Параллельная работа синхронных генераторов
- •4.9.1. Параллельная работа генераторов при неравенстве напряжений
- •4.9.2. Параллельная работа генераторов при неравенстве частот
- •4.10. Синхроноскопы
- •4.10.1. Включение генератора параллельно сети на погасание ламп
- •4.10.2. Включение генератора параллельно сети на бегущий свет
- •4.11. Электромагнитная мощность и момент синхронных машин
- •4.12. Режимы работы синхронной машины параллельно с сетью
- •Методы регулирования реактивной и активной мощности генератора.
- •4.13. Синхронные двигатели
- •4.13.1. Векторные диаграммы синхронного двигателя
- •4.13.2 Угловые характеристики синхронного двигателя
- •4.13.3. Режим работы синхронного двигателя при постоянном моменте и переменном токе возбуждения
- •4.13.4. Пуск синхронного двигателя
- •Список литературы
3.6.5. Регулирование частоты вращения двигателей постоянного тока
С точки
зрения, регулирования частоты вращения
двигателя постоянного тока являются
универсальными. Можно регулировать
скорость за счет изменения сопротивления
в цепи якоря, потоком и подводимым
напряжением. Это видно из формулы:
.
1.Регулирование частоты вращения сопротивлением в цепи якоря.
Уравнения токов до и после введения сопротивления
,
,
откуда
,
т. е. ток
и момент уменьшается (
)
.
При
этом
и
скорость
уменьшается. С уменьшением скорости
ток якоря возрастает, и он достигнет
исходного тока якоря, но при меньшей
скорости
.
Переходный процесс показан на рис. 50.
Регулирование частоты вращения сопротивлением в цепи якоря осуществляется в сторону уменьшения скорости, рис. 51.
Но так
как ток якоря протекает по Rр,
то увеличиваются общие потери, и снижается
кпд. При постоянном токе, за счет
увеличения падения напряжения
,
скорость двигателя уменьшается.
2.Регулирование частоты вращения за счет изменения потока
Т
ок
якоря до и после изменения потока
,
,
их отношение
.
Уравнение моментов
.
Уменьшим поток на
,
т. е.
,
.
Напряжение примем за единицу, тогда
.
Ток
якоря возрос в 3,3 раза, тогда
,
то
и
(возрастает).
Переходный процесс представлен на рис.
52.
Ток
.
С увеличением скорости вращения, ток
якоря будет уменьшаться, но он будет
больше исходного т. к. уменьшен поток.
П
ри
уменьшении потока частота вращения
возрастает, рис 53.
Рис. 53.
Как правило, регулирование частоты вращения изменением потока производят в сторону увеличения. В сторону уменьшения регулирование мало эффективно из-за насыщения магнитной цепи.
3.Регулирование частоты вращения изменением подводимого напряжения.
Регулирование частоты вращения изменением подводимого напряжения производится следующими способами:
А) Система генератор-двигатель (Г-Д).
Б) Тиристорный преобразователь-двигатель (ТП-Д).
В) Широтно-импульсное регулирование.
А) Система Г-Д, рис.54.
Рис. 54.
Увеличивая ток возбуждения генератора iвг, возрастает поток Фг и Ег, а следовательно увеличивается напряжение на якоре двигателя и скорость возрастает. Регулирование происходит плавно при малых потерях энергии.
Эта система используется при большой мощности двигателя (подъёмники, прокатные станы, экскаваторы и т.д).
Б) Тиристорный преобразователь-двигатель.
В системе Г-Д используется большое число машин, что увеличивает стоимость установки и снижает надежность.
П
оэтому
в последнее время для регулируемого
напряжения все чаще используются
статические преобразователи, рис.55.
Рис. 55.
Увеличивая угол управления
- площадь полупериода уменьшается,
уменьшается среднее значение напряжения
- Uср, а следовательно
уменьшается скорость вращения.
В) Широтно-импульсное регулирование.
И
дея
регулирования напряжения подводимого
к двигателю заключается в том, что,
изменяя длительность подключения
двигателя ключом (К) к сети, изменяется
среднее значение напряжения, рис. 56. В
качестве ключа используются схемы на
базе тиристоров или транзисторов.
Р
ис.
56.
Изменяя
время импульса tи
изменяется скважность
,
где t4 - время импульса;
tп - время паузы.
Среднее значение Uср=U0.
.
Как видим, изменяя среднее значение напряжения, можно регулировать частоту вращения двигателя. Эта система широко используется вместо контактакторно-резисторных систем.