
- •Оглавление
- •I Трансформаторы……………………………………………..………………………... 6
- •III Машины постоянного тока……………………….………………………………...….71
- •I Трансформаторы
- •Устройство трансформатора
- •1.1.1. Шихтовка железа стержневого трансформатора
- •1.2.Однофазные трансформаторы. Холостой ход однофазного трансформатора
- •1.2.1.Ток холостого хода
- •1.2.2.Потери при холостом ходе трансформатора
- •1.2.3.Схема замещения трансформатора при холостом ходе
- •1.2.4.Определение параметров экспериментально zm, xm,rm
- •1.3. Работа однофазного трансформатора под нагрузкой
- •1.3.1 Физические процессы в трансформаторе при нагрузке
- •1.3.2. Векторная диаграмма трансформатора при нагрузке
- •1.3.3. Схема замещения трансформатора при нагрузке
- •Режим короткого замыкания однофазного трансформатора
- •Векторная диаграмма трансформатора при коротком замыкании
- •Потери при коротком замыкании
- •1.4.3. Экспериментальное определение параметров короткого замыкания
- •Треугольник короткого замыкания
- •Совмещение режимов
- •Трехфазные трансформаторы
- •Группы соединения трансформаторов
- •Холостой ход трехфазного трансформатора
- •1.7.1. Соединение обмоток трансформатора /
- •1.7.2. Соединение обмоток трансформатора /
- •1.8. Параллельная работа трансформаторов
- •1.8.1. Параллельная работа трансформаторов при неравенстве коэффициентов трансформации
- •1.8.2. Параллельная работа трансформаторов при неравенстве напряжений короткого замыкания
- •1.8.3. Параллельная работа трансформаторов с различными группами соединения
- •1.9. Переходные режимы трансформаторов
- •Переходный процесс при включении трансформатора в холостую
- •Переходный процесс при коротком замыкании трансформатора
- •Переходные процессы, вызванные перенапряжением
- •II Асинхронные машины
- •2.1. Устройство и принцип действия асинхронного двигателя
- •2.1.1. Принцип создания вращающего магнитного поля статорной обмоткой
- •2.1.2. Принцип действия асинхронного двигателя
- •2.2. Общие вопросы машин переменного тока
- •Обмотки машин переменного тока
- •2.2.1. Обмотки машин переменного тока
- •Элементы обмоток переменного тока
- •Пример выполнения однослойной обмотки
- •2.2.2. Электродвижущая сила (эдс) обмотки машин переменного тока
- •2.2.3. Намагничивающая сила обмоток машин переменного тока
- •2.3. Рабочий процесс асинхронного двигателя
- •2.3.1. Режимы работы асинхронной машины
- •2.3.2. Режим двигателя
- •2.3.3. Трехфазная асинхронная машина при вращающемся роторе
- •2.3.4. Привидение параметров роторной обмотки к статорной
- •2.3.5. Приведение асинхронного двигателя к эквивалентному трансформатору
- •Запишем выражение для тока ротора
- •2.3.6. Схема замещения роторной цепи
- •2.3.7. Векторная диаграмма асинхронного двигателя
- •2.3.8. Схемы замещения асинхронной машины
- •2.4. Вращающий момент асинхронной машины
- •2 .4.1. Вращающий (электромагнитный) момент асинхронной машины
- •2.4.2. Максимальный (критический) момент
- •Знак - - соответствует генераторному режиму
- •2.4.3. Расчетная формула момента
- •2.4.4. Влияние высших гармоник магнитного поля на работу асинхронной машины
- •Задавшись током i1
- •2.6. Пуск трехфазных асинхронных двигателей
- •Прямой пуск асинхронных двигателей простой и нет необходимости в дополнительной аппаратуре.
- •2 .6.3. Пуск двигателя с фазным ротором
- •2.7. Асинхронные двигатели с обмоткой ротора специального исполнения
- •2.7.1. Короткозамкнутый асинхронный двигатель с глубоким пазом на роторе
- •Кратность пускового тока
- •2.7.2. Короткозамкнутый асинхронный двигатель с двойной клеткой на роторе
- •2.8. Регулирование частоты вращения асинхронных двигателей
- •2.8.1. Регулирование частоты вращения двигателя изменением частоты
- •2.8.2. Регулирование частоты вращения двигателя путем изменения числа пар полюсов
- •2.8.3. Регулирование частоты вращения двигателя сопротивлением в цепи ротора (с фазным ротором)
- •2.8.4. Регулирование частоты вращения изменением подводимого напряжения
- •2.9. Асинхронная машина в качестве генератора
- •Докажем это аналитически. Ток в роторе
- •2.9.1. Векторная диаграмма асинхронного генератора
- •2.9.2. Однофазный двигатель
- •III Машины постоянного тока
- •3.1. Устройство и принцип действия машин постоянного тока
- •3.2. Обмотки якоря машин постоянного тока
- •Основные требования, предъявляемые к обмотке
- •3.2.2. Простая волновая обмотка
- •3.2.3. Сложно-петлевая обмотка
- •3.2.4. Сложно-волновые обмотки
- •3.2.5. Симметрия обмоток
- •3.2.6. Смешанная (лягушечья) обмотка
- •3.3. Эдс обмотки якоря
- •3.4. Реакция якоря в машинах постоянного тока
- •3.5. Генераторы постоянного тока
- •Энергетическая диаграмма генератора независимого возбуждения.
- •Электромагнитный момент генератора постоянного тока
- •3.5.1. Генератор независимого возбуждения
- •Свойства генератора определяются его характеристиками. 1.Характеристика холостого хода: , ,
- •3 .5.2. Генератор параллельного возбуждения
- •3.5.3. Генератор последовательного возбуждения
- •3.5.4. Генератор смешанного возбуждения г енератор смешанного возбуждения широко используется в промышленности. Обмотки возбуждения по потоку могут быть включены согласно, либо встречно, рис. 35.
- •3.6. Двигатели постоянного тока
- •3.6.1. Энергетическая диаграмма двигателя постоянного тока
- •3.6.2. Пуск двигателей постоянного тока
- •3.6.3. Реверсирование двигателя постоянного тока
- •3.6.4. Классификация двигателей постоянного тока
- •Принципиальная схема включения двигателя параллельного возбуждения представлена на рис. 43. Для пуска используется пусковой реостат (п. Р.). Свойства двигателя определяются его характеристиками.
- •О сновное уравнение движения электропривода
- •3.6.5. Регулирование частоты вращения двигателей постоянного тока
- •3.Регулирование частоты вращения изменением подводимого напряжения.
- •3 .7. Коммутация двигателя
- •3.7.1 Закон изменения тока в коммутируемой секции
- •3.7.2. Прямолинейная коммутация
- •3.7.3. Замедленная коммутация
- •3.7.4. Ускоренная коммутация
- •3.7.5. Определение реактивной эдсer
- •3.7.6. Способы улучшения коммутации
- •3.7.7. Круговой огонь в машинах постоянного тока
- •IV Синхронные машины
- •4.1. Назначение, устройство и принцип действия
- •4.2. Работа генератора при холостом ходе
- •4.3. Реакция якоря в синхронном явнополюсном генераторе
- •4.3.1. Реакция якоря при активной нагрузке
- •4.3.2. Реакция якоря при индуктивной нагрузке
- •4.3.3. Реакция якоря при емкостной нагрузке
- •4.3.4. Реакция якоря при смешанной нагрузке
- •4.4. Магнитное рассеяние
- •4.5. Рабочий процесс синхронной машины
- •4.5.1. Основная диаграмма эдс явнополюсного синхронного генератора
- •4.5.2. Преобразованная диаграмма эдс явнополюсной синхронной машины
- •4.6. Определение параметров синхронной машины по снятым характеристикам
- •4.6.1. Определение индуктивного ненасыщенного сопротивления Xd
- •4.6.2. Определение параметра Xd насыщенного
- •4.6.3. Определение параметра Xq
- •4.6.4. Определение параметров Xq и Xd методом скольжения
- •4.6.5. Определение параметра Xs
- •4.7. Понятие о сверхпереходных и переходных индуктивных сопротивлениях
- •4.8. Диаграммы намагничивающих сил
- •4.9. Параллельная работа синхронных генераторов
- •4.9.1. Параллельная работа генераторов при неравенстве напряжений
- •4.9.2. Параллельная работа генераторов при неравенстве частот
- •4.10. Синхроноскопы
- •4.10.1. Включение генератора параллельно сети на погасание ламп
- •4.10.2. Включение генератора параллельно сети на бегущий свет
- •4.11. Электромагнитная мощность и момент синхронных машин
- •4.12. Режимы работы синхронной машины параллельно с сетью
- •Методы регулирования реактивной и активной мощности генератора.
- •4.13. Синхронные двигатели
- •4.13.1. Векторные диаграммы синхронного двигателя
- •4.13.2 Угловые характеристики синхронного двигателя
- •4.13.3. Режим работы синхронного двигателя при постоянном моменте и переменном токе возбуждения
- •4.13.4. Пуск синхронного двигателя
- •Список литературы
2.3. Рабочий процесс асинхронного двигателя
2.3.1. Режимы работы асинхронной машины
П
усть
в начале ротор не вращается. Магнитное
поле, пересекая проводники ротора
индуктируют в них ЭДС. При замкнутой
цепи ротора по обмотке его потечет ток.
Взаимодействие потока статора и тока ротора вызовет усилие, действующее на проводник, под действием которого ротор начнет вращаться. Вращение будет в ту же сторону, что магнитный поток. Скорость ротора будет меньше скорости вращения магнитного поля статора. Скольжение
.
Разберемся, в каких пределах будет изменяться скольжение.
Момент зависит от потока Ф и тока I2 при U = const, поток также постоянен. Если увеличивается момент на валу, то увеличивается и момент двигателя за счет увеличения тока I2, а I2 Е2 S, S за счет увеличения интенсивного пересечения проводников ротора.
При неподвижном роторе n = 0, S = 1
Если ротор будет вращаться с n = n1, S = 0
Это диапазон скольжений соответствует двигательному режиму. Мощность потребляемая из сети будет преобразована в механическую на валу.
Но если под действием спускаемого груза раскрутить ротор до скорости больше синхронной, то машина перейдет в генераторный режим
n > n1, S < 0 - скольжение отрицательное
При этом режиме механическая мощность будет преобразована в электрическую, которая будет отдаваться в сеть Р1, а реактивная будет потребляться для создания магнитного потока - Q.
Режим противовключения.
Если например в приводе имеется большой маховик, то если отключить двигатель, то маховик будет вращаться длительное время до остановки, но если же мы переключим две фазы асинхронного двигателя, то его момент будет направлен против вращения маховика и время останова его резко сократиться. При этом режиме мощность будет потребляться из сети и механическая мощность будет теряться в роторе. Это тяжелый режим для асинхронной машины. Поэтому, если используется двигатель с фазным ротором, то на период работы в цепь ротора включают значительное сопротивление для ограничения тока. Если же используется короткозамкнутый двигатель, то пускают его при пониженном напряжении. Ниже на рисунке представлены все три режима работы асинхронной машины.
2.3.2. Режим двигателя
Рассмотрим два крайних режима двигателя:
а) холостой ход двигателя
При холостом ходе нет нагрузки на валу, ротор под действием вращающего магнитного поля статора разгонится до скорости близкой к синхронной, а ток статора равен току холостого хода. Мощность, потребляемая из сети пойдет на покрытие потерь, т.е.
Ро = Рэл1 + Рмг + Рмех + Рдоб
Разница между тр-м и двигателем будет только конструктивная. В двигателе имеется воздушный зазор. Поэтому ток холостого хода двигателя равен 20 30 от номинального.
б) режим короткого замыкания
При этом режиме ротор механически заторможен, а обмотка ротора закорочена. К статору подводится пониженное напряжение, при котором ток имеет значение близкое к номинальному. Мощность короткого замыкания пойдет на покрытие потерь в стали и обмотках. При номинальном напряжении пусковой ток
Iп = (5 7)Iн.
Используя данные режима холостого хода и короткого замыкания можно построить круговую диаграмму, а по ней определить рабочие характеристики двигателя при нагрузке.