
- •1.История развития гидравлики и гидроприводов. Их техническое и экономическое значение в современном и перспективном машиностроении.
- •2.Основные и вспомогательные функции рабочих жидкостей в гидроприводах. Основные свойства, характеристики и требования к рабочим жидкостям гидроприводов.
- •4.Плотность жидкостей. Влияние температуры и давления на плотность жидкостей.
- •5. Сжимаемость и температурное расширение жидкостей.
- •6.Растворимость газов в жидкостях. Пенообразование и методы борьбы с ним в гидроприводах.
- •7.Факторы, влияющие на выбор (назначение) рабочей жидкости для гидроприводов, работающих в условиях эксплуатации
- •8.Гидростатическое давление и его свойства.
- •9.Основное уравнение гидростатики (вывод).
- •10.Уравнение неразрывности потока
- •11. Расход и средняя скорость движения жидкости.
- •12.Уравнение Бернулли и его частные случаи (вывод).
- •13.Особенности и практическое использование ламинарного и турбулентного движения жидкости.
- •14.Местные гидравлические сопротивления. Потери давления на местных сопротивлениях и методы его определения.
- •17.Облитерационные явления. Методы борьбы с облитерацией.
- •18.Приборы для измерения давления. Принцип их устройства и работы.
- •19.Гидролинии и соединения для них. Конструкция и области применения. Определение внутреннего диаметра трубопроводов объемных гидроприводов строительных машин.
- •25.Диаграммы подачи рабочей жидкости для насосов. Определение значений коэффициента неравномерности подачи для насосов различных конструкций
- •27.Шестеренные гидромашины. Принцип их устройства и работы в функции насосов и гидромоторов. Основные энергетические параметры и характеристики
- •31.Распределение рабочей жидкости в радиально-поршневых гидромашинах.
- •32.Аксиально-поршневые гидромашины. Принцип их устройства и работы в функции насосов и гидромоторов. Основные энергетические параметры и характеристики
- •33.Сравнительная оценка конструкций аксиально-поршневых гидромашин с наклонным блоком цилиндров и с наклонным диском.
- •34.Кинематика аксиально-поршневых гидромашин.
- •41.Контрольно-регулирующая гидроаппаратура. Ее функциональное назначение, принцип работы и устройство.
- •42.Регулирующая аппаратура систем гидроавтоматики. Переливные, предохранительные и редукционные клапаны.
- •44.Распределительная аппаратура, ее функциональное назначение, принцип работы и устройство.
- •45.Конструктивные особенности, расчет и свойства золотниковых распределителей. Перекрытие окон золотников.
- •46.Понятия линейности и позиционности золотниковых гидрораспределителей
- •50) Крановые и клапанные гидрораспределители.
- •51) Правила выполнения принципиальных гидравлических схем ( в соответствии с гост 2.704-76 Правила выполнения гидравлических и пневматических схем)
- •55) Монтаж и эксплуатация объемных гидроприводов
11. Расход и средняя скорость движения жидкости.
Расход потока Q - объем жидкости V, протекающей за единицу времени t через живое сечение ω.
Средняя скорость потока υ - скорость движения жидкости, определяющаяся отношением расхода жидкости Q к площади живого сечения ω
Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.
скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.
Гидравлический
радиус потока R
- отношение живого сечения к смоченному
периметру
Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени
υ = f(x, y, z) P = φ f(x, y, z)
Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным
υ = f1(x, y, z, t) P = φ f1(x, y, z, t)
Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.
Трубка тока - трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой.
Рис. 3.3. Линия тока и струйка
Течение жидкости может быть напорным и безнапорным. Напорное течение наблюдается в закрытых руслах без свободной поверхности. Напорное течение наблюдается в трубопроводах с повышенным (пониженным давлением). Безнапорное - течение со свободной поверхностью, которое наблюдается в открытых руслах (реки, открытые каналы, лотки и т.п.). В данном курсе будет рассматриваться только напорное течение.
12.Уравнение Бернулли и его частные случаи (вывод).
d
s1 ds2
Z
2
Z1 u2
U2 p2
p2
Элемент струйки идеальной жидкости при установленном движении виделим участок произвольной длинны .Применим к этой системе закон сохранения.Рассмортим закон сохранения кинетической энергии.
Ek2-Ek1=m2*u22/ m1*u12=(pQ2dt*u22)/2-=(pQ1dt*u12)/2=dE= (pQdt)/2*( u22- u12)
m=pQdt; m=pv; Q=V\dt; V=Qdt;
Eп2-Eп1=m1gz1- m2gz2= pQ1dtg(z1-z2);
dEk=(pQdt)/2*( u22- u12);
dEп= pQdtg(z1-z2);
N=A\t; A=Nt=pQdt;
dEp=Qdt(p1-p2);
dEк= dEп+dEp
(pQdt)\2*( u22- u12)=pQdtg(z1-z2)+Qdt(p1-p2); Делим выражение на pgQdt
dEp= Qdt(p1-p2)*1\2g(u22- u12)=(z1-x2)+1\pg(p1-p2);
z1+p1\pg+альфа1u21\2g= z2+p2\pg+альфа2u22\2g+hтр;
уравнение для реальной жидкости;
htp-потеря энергии на преодоление гидравлического сопративления
а
льфы
это коэффициенты Кореолиса
Т
ак
как сечения 1-1
и 2-2
взяты произвольно, то полученное
уравнение можно переписать иначе:
и прочитать так: сумма трех членов уравнения Бернулли для любого сечения потока идеальной жидкости есть величина постоянная.
С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии:
z
1
и z2 - удельные энергии положения,
характеризующие потенциальную энергию
в сечениях 1-1
и 2-2;
-
удельные энергии давления, характеризующие
потенциальную энергию давления в тех
же сечениях;
- удельные кинетические
энергии в тех же сечениях.
Следовательно, согласно уравнению Бернулли, полная удельная энергия идеальной жидкости в любом сечении постоянна.
В этом случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная.