
- •1.История развития гидравлики и гидроприводов. Их техническое и экономическое значение в современном и перспективном машиностроении.
- •2.Основные и вспомогательные функции рабочих жидкостей в гидроприводах. Основные свойства, характеристики и требования к рабочим жидкостям гидроприводов.
- •4.Плотность жидкостей. Влияние температуры и давления на плотность жидкостей.
- •5. Сжимаемость и температурное расширение жидкостей.
- •6.Растворимость газов в жидкостях. Пенообразование и методы борьбы с ним в гидроприводах.
- •7.Факторы, влияющие на выбор (назначение) рабочей жидкости для гидроприводов, работающих в условиях эксплуатации
- •8.Гидростатическое давление и его свойства.
- •9.Основное уравнение гидростатики (вывод).
- •10.Уравнение неразрывности потока
- •11. Расход и средняя скорость движения жидкости.
- •12.Уравнение Бернулли и его частные случаи (вывод).
- •13.Особенности и практическое использование ламинарного и турбулентного движения жидкости.
- •14.Местные гидравлические сопротивления. Потери давления на местных сопротивлениях и методы его определения.
- •17.Облитерационные явления. Методы борьбы с облитерацией.
- •18.Приборы для измерения давления. Принцип их устройства и работы.
- •19.Гидролинии и соединения для них. Конструкция и области применения. Определение внутреннего диаметра трубопроводов объемных гидроприводов строительных машин.
- •25.Диаграммы подачи рабочей жидкости для насосов. Определение значений коэффициента неравномерности подачи для насосов различных конструкций
- •27.Шестеренные гидромашины. Принцип их устройства и работы в функции насосов и гидромоторов. Основные энергетические параметры и характеристики
- •31.Распределение рабочей жидкости в радиально-поршневых гидромашинах.
- •32.Аксиально-поршневые гидромашины. Принцип их устройства и работы в функции насосов и гидромоторов. Основные энергетические параметры и характеристики
- •33.Сравнительная оценка конструкций аксиально-поршневых гидромашин с наклонным блоком цилиндров и с наклонным диском.
- •34.Кинематика аксиально-поршневых гидромашин.
- •41.Контрольно-регулирующая гидроаппаратура. Ее функциональное назначение, принцип работы и устройство.
- •42.Регулирующая аппаратура систем гидроавтоматики. Переливные, предохранительные и редукционные клапаны.
- •44.Распределительная аппаратура, ее функциональное назначение, принцип работы и устройство.
- •45.Конструктивные особенности, расчет и свойства золотниковых распределителей. Перекрытие окон золотников.
- •46.Понятия линейности и позиционности золотниковых гидрораспределителей
- •50) Крановые и клапанные гидрораспределители.
- •51) Правила выполнения принципиальных гидравлических схем ( в соответствии с гост 2.704-76 Правила выполнения гидравлических и пневматических схем)
- •55) Монтаж и эксплуатация объемных гидроприводов
7.Факторы, влияющие на выбор (назначение) рабочей жидкости для гидроприводов, работающих в условиях эксплуатации
. Химическая и механическая стойкость. Характеризует способность жидкости сохранять свои первоначальные физические свойства при эксплуатации и хранении.
Окисление жидкости сопровождается выпадением из нее смол и шлаков, которые откладываются на поверхности элементов гидропривода в виде твердого налета. Снижается вязкость и изменяется цвет жидкости. Продукты окисления вызывают коррозию металлов и уменьшают надежность работы гидроаппаратуры. Налет вызывает заклинивание подвижных соединений, плунжерных пар, дросселирующих отверстий, разрушение уплотнений и разгерметизацию гидросистемы. . Совместимость. Совместимость рабочих жидкостей с конструкционными материалами и особенно с материалами уплотнений имеет очень большое значение. Рабочие жидкости на нефтяной основе совместимы со всеми металлами, применяемыми в гидромашиностроении, и плохо совместимы с уплотнениями, изготовленными из синтетической резины и из кожи. Синтетические рабочие жидкости плохо совмещаются с некоторыми конструкционными материалами и не совместимы с уплотнениями из маслостойкой резины. Испаряемость жидкости. Испаряемость свойственна всем капельным жидкостям, однако интенсивность испарения неодинакова у различных жидкостей и зависит от условий в которых она находится: от температуры, от площади испарения, от давления, и от скорости движения газообразной среды над свободной поверхностью жидкости (от ветра).
8.Гидростатическое давление и его свойства.
В покоящейся жидкости всегда присутствует сила давления, которая называется гидростатическим давлением. Жидкость оказывает силовое воздействие на дно и стенки сосуда. Частицы жидкости, расположенные в верхних слоях водоема, испытывают меньшие силы сжатия, чем частицы жидкости, находящиеся у дна.
Рассмотрим резервуар с плоскими вертикальными стенками, наполненный жидкостью (рис.2.1, а). На дно резервуара действует сила P равная весу налитой жидкости G = γ V, т.е. P = G.
Если эту силу P разделить на площадь дна Sabcd, то мы получим среднее гидростатическое давление, действующее на дно резервуара.
Гидростатическое давление обладает свойствами.
Свойство 1. В любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема жидкости.
Свойство 2. Гидростатическое давление неизменно во всех направлениях.
P'xΔyΔz=P''xΔyΔz P'yΔxΔz = P''yΔxΔz P'zΔxΔy + γΔx, Δy, Δz = P''zΔxΔy
где γ - удельный вес жидкости; Δx, Δy, Δz - объем кубика.
Сократив полученные равенства, найдем, что
P'x = P''x; P'y = P''y; P'z + γΔz = P''z
Членом третьего уравнения γΔz, как бесконечно малым по сравнению с P'z и P''z, можно пренебречь и тогда окончательно
P'x = P''x; P'y = P''y; P'z=P''z
Вследствие того, что кубик не деформируется (не вытягивается вдоль одной из осей), надо полагать, что давления по различным осям одинаковы, т.е.
P'x = P''x = P'y = P''y = P'z=P''z
Это доказывает второй свойство гидростатического давления.
Свойство 3. Гидростатическое давление в точке зависит от ее координат в пространстве.
Это положение не требует специального доказательства, так как ясно, что по мере увеличения погружения точки давление в ней будет возрастать, а по мере уменьшения погружения уменьшаться. Третье свойство гидростатического давления может быть записано в виде
P=f(x, y, z)