
- •1.История развития гидравлики и гидроприводов. Их техническое и экономическое значение в современном и перспективном машиностроении.
- •2.Основные и вспомогательные функции рабочих жидкостей в гидроприводах. Основные свойства, характеристики и требования к рабочим жидкостям гидроприводов.
- •4.Плотность жидкостей. Влияние температуры и давления на плотность жидкостей.
- •5. Сжимаемость и температурное расширение жидкостей.
- •6.Растворимость газов в жидкостях. Пенообразование и методы борьбы с ним в гидроприводах.
- •7.Факторы, влияющие на выбор (назначение) рабочей жидкости для гидроприводов, работающих в условиях эксплуатации
- •8.Гидростатическое давление и его свойства.
- •9.Основное уравнение гидростатики (вывод).
- •10.Уравнение неразрывности потока
- •11. Расход и средняя скорость движения жидкости.
- •12.Уравнение Бернулли и его частные случаи (вывод).
- •13.Особенности и практическое использование ламинарного и турбулентного движения жидкости.
- •14.Местные гидравлические сопротивления. Потери давления на местных сопротивлениях и методы его определения.
- •17.Облитерационные явления. Методы борьбы с облитерацией.
- •18.Приборы для измерения давления. Принцип их устройства и работы.
- •19.Гидролинии и соединения для них. Конструкция и области применения. Определение внутреннего диаметра трубопроводов объемных гидроприводов строительных машин.
- •25.Диаграммы подачи рабочей жидкости для насосов. Определение значений коэффициента неравномерности подачи для насосов различных конструкций
- •27.Шестеренные гидромашины. Принцип их устройства и работы в функции насосов и гидромоторов. Основные энергетические параметры и характеристики
- •31.Распределение рабочей жидкости в радиально-поршневых гидромашинах.
- •32.Аксиально-поршневые гидромашины. Принцип их устройства и работы в функции насосов и гидромоторов. Основные энергетические параметры и характеристики
- •33.Сравнительная оценка конструкций аксиально-поршневых гидромашин с наклонным блоком цилиндров и с наклонным диском.
- •34.Кинематика аксиально-поршневых гидромашин.
- •41.Контрольно-регулирующая гидроаппаратура. Ее функциональное назначение, принцип работы и устройство.
- •42.Регулирующая аппаратура систем гидроавтоматики. Переливные, предохранительные и редукционные клапаны.
- •44.Распределительная аппаратура, ее функциональное назначение, принцип работы и устройство.
- •45.Конструктивные особенности, расчет и свойства золотниковых распределителей. Перекрытие окон золотников.
- •46.Понятия линейности и позиционности золотниковых гидрораспределителей
- •50) Крановые и клапанные гидрораспределители.
- •51) Правила выполнения принципиальных гидравлических схем ( в соответствии с гост 2.704-76 Правила выполнения гидравлических и пневматических схем)
- •55) Монтаж и эксплуатация объемных гидроприводов
4.Плотность жидкостей. Влияние температуры и давления на плотность жидкостей.
Одной из основных механических характеристик жидкости является ее плотность. Плотностью жидкости называют массу жидкости заключенную в единице объема.
Удельным весом называют вес единицы объема жидкости, который определяется по формуле:
С увеличением температуры удельный вес жидкости уменьшается. Изменение давления мало влияет на объем твердых тел и жидкостей, или же заметно не влияет вообще. Увеличение температуры, однако, приводит к расширению большинства твердых тел и жидкостей. Если объем вещества увеличивается, то плотность этого вещества уменьшается, поскольку его масса остается неизменной. Расширение твердых тел обычно очень мало, и им, как правило, пренебрегают. Вместе с тем расширение жидкостей с увеличением температуры более заметно, и изменение плотности может быть обнаружено. Фактически конвекционные движения в жидкостях и газах являются прямым следствием изменений плотности при изменении температуры.
Выталкивающая (архимедова) сила в жидкостях зависит от плотности жидкости. Изменение плотности жидкости с температурой следует принимать во внимание, когда, например, судно плывет из жаркого климата в холодный или'наоборот. Если не предпринимать никаких мер, то осадка корабля будет больше в теплых водах, чем в холодных, поскольку теплая вода менее плотна, чем холодная.
5. Сжимаемость и температурное расширение жидкостей.
1. Сжимаемость - свойство жидкости изменять свой объем под действием давления. Сжимаемость жидкости характеризуется коэффициентом объемного сжатия, который определяется по формуле
где V - первоначальный объем жидкости, dV - изменение этого объема, при увеличении давления на величину dP.
Величина обратная βV называется модулем объемной упругости жидкости:
Модуль объемной упругости не постоянен и зависит от давления и температуры. При гидравлических расчетах сжимаемостью жидкости обычно пренебрегают и считают жидкости практически несжимаемыми. Сжатие жидкостей в основном обусловлено сжатием растворенного в них газа.
Сжимаемость понижает жесткость гидропривода, т.к., на сжатие затрачивается энергия. Сжимаемость может явиться причиной возникновения автоколебаний в гидросистеме, создает запаздывание в срабатывании гидроаппаратуры и исполнительных механизмах.
Иногда сжимаемость жидкостей полезна - ее используют в гидравлических амортизаторах и пружинах
2. Температурное расширение - относительное изменение объема жидкости при увеличении температуры на 1°С при Р = const. Характеризуется коэффициентом температурного расширения
Поскольку для капельных жидкостей коэффициент температурного расширения ничтожно мал, то при практических расчетах его не учитывают.
6.Растворимость газов в жидкостях. Пенообразование и методы борьбы с ним в гидроприводах.
Растворимость газов в жидкостях характеризуется объемом растворенного газа в единице объема жидкости и определяется по закону Генри:
где VГ - объем растворенного газа; VЖ - объем жидкости; k - коэффициент растворимости; Р - давление; Ра - атмосферное давление.
Коэффициент k имеет следующие значения при 20 С: для воды 0,016, керосина 0,13, минеральных масел 0,08, жидкости АМГ-10 - 0,1. При понижении давления выделяется растворимый в жидкости газ. Это явление может отрицательно сказываться на работе гидросистем. 6. Пенообразование. Выделение воздуха из рабочей жидкости при падении давления может вызвать пенообразование. На интенсивность пенообразования оказывает влияние содержащаяся в рабочей жидкости вода: даже при ничтожном количестве воды (менее 0,1% по массе рабочей жидкости) возникает устойчивая пена. Образование и стойкость пены зависят от типа рабочей жидкости, от ее температуры и размеров пузырьков, от материалов и покрытий гидроаппаратуры. Особенно пенообразование происходит интенсивно в загрязненных жидкостях и бывших в эксплуатации. При температуре жидкости свыше 70 С происходит быстрый спад пены.