
- •1.История развития гидравлики и гидроприводов. Их техническое и экономическое значение в современном и перспективном машиностроении.
- •2.Основные и вспомогательные функции рабочих жидкостей в гидроприводах. Основные свойства, характеристики и требования к рабочим жидкостям гидроприводов.
- •4.Плотность жидкостей. Влияние температуры и давления на плотность жидкостей.
- •5. Сжимаемость и температурное расширение жидкостей.
- •6.Растворимость газов в жидкостях. Пенообразование и методы борьбы с ним в гидроприводах.
- •7.Факторы, влияющие на выбор (назначение) рабочей жидкости для гидроприводов, работающих в условиях эксплуатации
- •8.Гидростатическое давление и его свойства.
- •9.Основное уравнение гидростатики (вывод).
- •10.Уравнение неразрывности потока
- •11. Расход и средняя скорость движения жидкости.
- •12.Уравнение Бернулли и его частные случаи (вывод).
- •13.Особенности и практическое использование ламинарного и турбулентного движения жидкости.
- •14.Местные гидравлические сопротивления. Потери давления на местных сопротивлениях и методы его определения.
- •17.Облитерационные явления. Методы борьбы с облитерацией.
- •18.Приборы для измерения давления. Принцип их устройства и работы.
- •19.Гидролинии и соединения для них. Конструкция и области применения. Определение внутреннего диаметра трубопроводов объемных гидроприводов строительных машин.
- •25.Диаграммы подачи рабочей жидкости для насосов. Определение значений коэффициента неравномерности подачи для насосов различных конструкций
- •27.Шестеренные гидромашины. Принцип их устройства и работы в функции насосов и гидромоторов. Основные энергетические параметры и характеристики
- •31.Распределение рабочей жидкости в радиально-поршневых гидромашинах.
- •32.Аксиально-поршневые гидромашины. Принцип их устройства и работы в функции насосов и гидромоторов. Основные энергетические параметры и характеристики
- •33.Сравнительная оценка конструкций аксиально-поршневых гидромашин с наклонным блоком цилиндров и с наклонным диском.
- •34.Кинематика аксиально-поршневых гидромашин.
- •41.Контрольно-регулирующая гидроаппаратура. Ее функциональное назначение, принцип работы и устройство.
- •42.Регулирующая аппаратура систем гидроавтоматики. Переливные, предохранительные и редукционные клапаны.
- •44.Распределительная аппаратура, ее функциональное назначение, принцип работы и устройство.
- •45.Конструктивные особенности, расчет и свойства золотниковых распределителей. Перекрытие окон золотников.
- •46.Понятия линейности и позиционности золотниковых гидрораспределителей
- •50) Крановые и клапанные гидрораспределители.
- •51) Правила выполнения принципиальных гидравлических схем ( в соответствии с гост 2.704-76 Правила выполнения гидравлических и пневматических схем)
- •55) Монтаж и эксплуатация объемных гидроприводов
31.Распределение рабочей жидкости в радиально-поршневых гидромашинах.
Насос работает следующим образом. При вращении ротора поршни под действием центробежной силы выдвигаются из цилиндров и прижимаются к реактивным кольцам обоймы. При этом если между ротором и обоймой есть эксцентриситет, то поршни, кроме вращательного, будут совершать и возвратно-поступательные (в радиальном направлении) движения. Изменение эксцентриситета вызывает соответствующее изменение хода поршней и подачи насоса. Вместе с ротором во вращение вовлекается обойма, вращающаяся в своих подшипниках. Такая конструкция позволяет уменьшить силы трения и повысить КПД гидромашины.
Для
радиально-поршневых машин работающих
в режиме гидромотора крутящий момент
можно определить по формуле
где m - число рядов цилиндров; i - кратность хода поршней; h - величина хода поршней.
32.Аксиально-поршневые гидромашины. Принцип их устройства и работы в функции насосов и гидромоторов. Основные энергетические параметры и характеристики
Аксиально-поршневые гидромашины нашли широкое применение в гидроприводах, что объясняется рядом их преимуществ: меньшие радиальные размеры, масса, габарит и момент инерции вращающихся масс; возможность работы при большом числе оборотов; удобство монтажа и ремонта. Аксиально-поршневой насос состоит из блока цилиндров 8 (рис.3.8) с поршнями (плунжерами) 4, шатунов 7, упорного диска 5, распределительного устройства 2 и ведущего вала 6.
К
огда
поршни выдвигаются из цилиндров,
происходит всасывание, а когда вдвигаются
- нагнетание. Через окна 1 и 3 в
распределительном устройстве 2 цилиндры
попеременно соединяются то с всасывающей,
то с напорной гидролиниями.
Н
асосы
с силовым карданом (см. рис.3.8, а) приводной
вал соединен с наклонным диском силовым
карданом выполненным шарнира с двумя
степенями свободы. При такой схеме
крутящий момент от приводящего двигателя
передается блоку цилиндров через кардан
и наклонный диск В насосах с двойным
несиловым карданом (см. рис.3.8, б) При
такой схеме вращение ведущего и ведомого
валов будет практически синхронным, а
кардан полностью разгруженным, так как
крутящий момент от приводящего двигателя
передается блоку цилиндров через диск
5, изготавливаемый заодно с валом 6.
Насосы с точечным касанием поршней наклонного диска (см. рис.3.8, в) имеют наиболее простую конструкцию, поскольку здесь нет шатунов и карданных валов.Эти машины выпускаются небольшой мощности, т.к. в местах контакта поршней с диском создается высокое напряжение, которое ограничивает давление жидкости.
Аксиально-поршневые машины бескарданного типа (см. рис.3.8, г) блок цилиндров соединяется с ведущим валом через шайбу и шатуны поршней. проще в изготовлении, надежнее в эксплуатации, имеют меньший габарит блока цилиндров.
33.Сравнительная оценка конструкций аксиально-поршневых гидромашин с наклонным блоком цилиндров и с наклонным диском.
Аксиально-поршневые гидромашины нашли широкое применение в гидроприводах, что объясняется рядом их преимуществ: меньшие радиальные размеры, масса, габарит и момент инерции вращающихся масс; возможность работы при большом числе оборотов; удобство монтажа и ремонта. Аксиально-поршневой насос состоит из блока цилиндров 8 (рис.3.8) с поршнями (плунжерами) 4, шатунов 7, упорного диска 5, распределительного устройства 2 и ведущего вала 6.
К огда поршни выдвигаются из цилиндров, происходит всасывание, а когда вдвигаются - нагнетание. Через окна 1 и 3 в распределительном устройстве 2 цилиндры попеременно соединяются то с всасывающей, то с напорной гидролиниями.
Насосы с силовым карданом (см. рис.3.8, а) приводной вал соединен с наклонным диском силовым карданом выполненным шарнира с двумя степенями свободы. При такой схеме крутящий момент от приводящего двигателя передается блоку цилиндров через кардан и наклонный диск
В насосах с двойным несиловым карданом (см. рис.3.8, б) При такой схеме вращение ведущего и ведомого валов будет практически синхронным, а кардан полностью разгруженным, так как крутящий момент от приводящего двигателя передается блоку цилиндров через диск 5, изготавливаемый заодно с валом 6.
Насосы с точечным касанием поршней наклонного диска (см. рис.3.8, в) имеют наиболее простую конструкцию, поскольку здесь нет шатунов и карданных валов.Эти машины выпускаются небольшой мощности, т.к. в местах контакта поршней с диском создается высокое напряжение, которое ограничивает давление жидкости. Аксиально-поршневые машины бескарданного типа (см. рис.3.8, г) блок цилиндров соединяется с ведущим валом через шайбу и шатуны поршней. проще в изготовлении, надежнее в эксплуатации, имеют меньший габарит блока цилиндров.