- •1 Структура пэвм. Размещение данных и программ в памяти пэвм. Биты, байты. Программа, машинная команда.
- •2. Состав программного обеспечения техн. Средств. Среда програм-я.
- •3.Среда программирования. Программные модули: исходный, объектный, загрузочный. Трансляторы, интерпретаторы, компоновщик, отладчик.
- •4.Трасляторы,интерпреторы,компоновщик,отладчик. Режимы компиляции и компоновки.
- •5.Особенности программирования и отладки встроенных систем.
- •6. Компоновка программных модулей и запись программной кодировки в целевое устройство.
- •7. Понятие структурного и модульного программирования.
- •8. Функциональная и модульная декомпозиции в программировании
- •9. Операционная система. Файловая система хранения информации.
- •10. Понятие алгоритмов и способы их описания
- •11. Графическое описание алгоритма. Основные символы схемы алгоритма
- •12. Стандартизация графического представления алгоритмов. Программная документация.
- •13. Базовые элементы языка Си. Алфавит. Лексемы. Знаки операций. Литералы. Комментарии.
- •14. Виды и характеристики языков программирования. Виды программных ошибок.
- •15. Идентификаторы и ключевые слова языка Си.
- •16. Структура программы на языке Си.
- •17. Декларация объектов. Основные типы данных
- •18. Категории типов данных (символьные, целые, с плавающей точкой).
- •19.Символьные и целые типы данных
- •20. Вещественные типы данных(с плавающей точкой).
- •21. Преобразование типов (явное и неявное). Приведение типа
- •22. Использование модификаторов при декларации типов данных
- •23 Система счисления. Кодовая таблица ascii. Классификация и преобразование символов
- •24. Константы. Целые константы. Константы с плавающей точкой. Символьные константы. Строки. Null.
- •Константы вещественного типа Данные константы размещаются в памяти в формате double, а во внешнем представлении могут иметь две формы:
- •25. Операции, выражения языка си
- •26.Арифметические операции. Аддитивные и мультипликативные операции
- •27. Условный оператор if.
- •28. Тернарная условная операция ?:.
- •29. Оператор выбора альтернатив switch.
- •30. Составление циклических алгоритмов. Операторы цикла с предусловием и с постусловием.
- •Оператор цикла с постусловием do – while Цикл с постусловием реализует структурную схему, приведенную на рис. 7.1, б.
- •31. Оператор цикла с предусловием и коррекцией for.
- •32. Операторы передачи управления (break, continue, return, goto).
- •33. Побитовые логические операции, операции над битами
- •34. Операции сравнения. Логические операции. Унарные операции.
- •Логические операции
- •35. Операция присваивания. Сокращенная запись операции присваивают.
- •Сокращенная запись операции присваивания:
- •36. Стандартная библиотека языка Си. Математические функции.
- •37. Строки в языке Си. Функции работы со строками.
- •38. Стандартная библиотека языка Си. Ввод данных.
- •39. Стандартная библиотека языка Си. Вывод данных.
- •40. Управляющая строка функций ввода/вывода
- •41. Ввод-вывод потоками.
- •42. Препроцессор. Директивы #include, #define, #if.
- •43. Одномерные массивы. Инициализация одномерных массивов. Ввод и инициализация массива символов.
- •44. Многомерные массивы. Инициализация многомерных массивов
- •Void main()
- •45. Структуры. Вложенные структуры
- •46. Массивы структур. Битовые поля
- •Int day, month, year;
- •47. Объединения. Перечисления
- •Void main(void)
- •Перечисления – средство создания типа данных посредством задания ограниченного множества значений.
- •48. Указатели. Указатели и адреса объектов. Указатели и массивы.
- •49. Операции с указателями: присваивание адреса, определение значения по адресу, присваивание указателей.
- •50. Операции с указателями: сложение и вычитание, инкремент и декремент, сравнение указателей
- •52.Операции typedef и sizeof.
- •53.Функции.Определение функции. Объявление функции и вызов функции. Возвращаемое значение функции.
- •Id_функции (список аргументов);
- •54.Функции. Типы передачи параметров функции (по значению, по адресу).
- •56. Функции. Массивы в качестве параметров функции
- •Void f1(int m[3][4]) {
- •Void fun( int m[ ][3]) {
- •57 Указатели на функции
- •58. Перегрузка функций
- •59 Классы памяти. Области действия объектов
- •60.Работа с файлами.Типы файлов (текстовый и бинарный)
- •61.Работа с файлами. Открытие файла в различных режимах и закрытие файла.
- •62.Работа с файлами. Чтение и запись данных в файл. Посимвольный и построчный ввод-вывод
- •63.Работа с файлами. Чтение и запись данных в файл. Блоковый ввод-вывод
- •Блоковый ввод-вывод.
- •64.Работа с файлами. Чтение и запись данных в файл. Форматированный ввод-вывод
- •65. Работа с файлами. Указатель текущей позиции в файле, его перемещение к нужной позиции.
- •66. Графический режим. Функции черчения и Заполнения
- •67. Графический режим. Функции вывода текста, функции управления цветом (outtext, outtextxy…..)
- •68. Среда разработки программ для микроконтроллеров, особенности написания программ для микроконтроллеров и программирования их периферийных устройств.
- •69. Средства записи программ и отладки для микроконтроллеров. Программаторы, симуляторы и внутрисхемные отладчики.
- •70. Интерфейс программирования jtag
49. Операции с указателями: присваивание адреса, определение значения по адресу, присваивание указателей.
Указатель – это переменная, которая может содержать адрес некоторого объекта. Простейшая декларация указателя имеет формат
тип * ID_указателя;
Например: int *a; double *f; char *w.
Присваивание указателей
Указатель можно использовать в правой части оператора присваивания для присваивания его значения другому указателю. Если оба указателя имеют один и тот же тип, то выполняется простое присваивание, без преобразования типа. В следующем примере
#include <stdio.h>
int main(void)
{ int x = 99;
int *p1, *p2;
p1 = &x;
p2 = p1; /* печать значение x дважды */
printf("Значение по адресу p1 и p2: %d %d\n", *p1, *p2); /* печать адреса x дважды */
printf("Значение указателей p1 и p2: %p %p", p1, p2);
return 0; }
после присваивания:
p1 = &x;
p2 = p1;
оба указателя (p1 и р2) ссылаются на х. То есть, оба указателя ссылаются на один и тот же объект. Программа выводит на экран следующее:
Значения по адресу p1 и р2 : 99 99
Значения указателей p1 и р2: 0063FDF0 0063FDF0
Допускается присваивание указателя одного типа указателю другого типа. Однако для этого необходимо выполнить явное преобразование типа указателя (операция приведения типов), которая рассматривается в следующем разделе.
Присваивание адреса и определение значения по адресу
Понятие указателя тесно связано с понятием адреса объекта. В C есть специальная операция, позволяющая получить адрес любой переменной:
&p – получение адреса, где p – идентификатор переменной. Результатом операции является адрес переменной p.
Пример программы:
# include <stdio.h>
int main()
{ int x=2,*p;
p=&x;
printf("\n x=%d address of x=%u",x,p);
return 0; }
Понятие переменной типа указатель также связано с операцией косвенной адресации *, называемой еще операцией разыменования, которая имеет структуру: *р – разыменование, где р – идентификатор переменной-указателя. Эта запись означает, что в ячейку с адресом, записанным в переменную р, помещено значение некоторой величины.
Операторы ptr=&a; и val=*ptr; равнозначны оператору val=a;
Например,
n=32;
p=&n; /* p–адрес ячейки, куда записано n */
v=*p;
В результате выполнения этих действий в переменную v будет помещено число 32.
50. Операции с указателями: сложение и вычитание, инкремент и декремент, сравнение указателей
Помимо уже рассмотренных операций, с указателями можно выполнять арифметические операции сложения, инкремента (++), вычитания, декремента (--) и операции сравнения.
Арифметические операции с указателями автоматически учитывают размер типа величин, адресуемых указателями. Эти операции применимы только к указателям одного типа и имеют смысл в основном при работе со структурами данных, последовательно размещенными в памяти, например с массивами.
Инкремент перемещает указатель к следующему элементу массива, декремент – к предыдущему.
Указатель, таким образом, может использоваться в выражениях вида
p # iv, ## p, p ##, p # = iv,
p – указатель, iv – целочисленное выражение, # – символ операции '+' или '–'.
Результатом таких выражений является увеличенное или уменьшенное значение указателя на величину iv * sizeof(*p), т.е. если указатель на определенный тип увеличивается или уменьшается на константу, его значение изменяется на величину этой константы, умноженную на размер объекта данного типа.
Текущее значение указателя всегда ссылается на позицию некоторого объекта в памяти с учетом правил выравнивания для соответствующего типа данных. Таким образом, значение p # iv указывает на объект того же типа, расположенный в памяти со смещением на iv позиций.
При сравнении указателей могут использоваться отношения любого вида («>», «<» и т.д.), но наиболее важными видами проверок являются отношения равенства и неравенства («==», «!=»).
Отношения порядка имеют смысл только для указателей на последовательно размещенные объекты (элементы одного массива).
Разность двух указателей дает число объектов адресуемого ими типа в соответствующем диапазоне адресов, т.е. в применении к массивам разность указателей, например, на третий и шестой элементы равна 3.
Очевидно, что уменьшаемый и вычитаемый указатели должны принадлежать одному массиву, иначе результат операции не имеет практической ценности и может привести к непредсказуемому результату. То же можно сказать и о суммировании указателей.
Значение указателя можно вывести на экран с помощью функции printf, используя спецификацию %p (pointer), результат выводится в шестнадцатеричном виде.
Рассмотрим фрагмент программы:
int a = 5, *p, *p1, *p2;
p = &a;
p2 = p1 = p;
++p1;
p2 += 2;
printf(“a = %d , p = %d , p = %p , p1 = %p , p2 = %p .\n”, a, *p, p, p1, p2);
Результат может быть следующим:
a = 5 , *p = 5 , p = FFF4 , p1 = FFF6, p2 = FFF8 .
Графически это выглядит следующим образом (в 16-разрядном процессоре на тип int отводится 2 байта):
|
FFF5 |
FFF7 |
FFF9 |
|
|||||
|
FFF4 р |
FFF6 p1 |
FFF8 p2 |
FFF10 |
|
||||
p = FFF4,
p1 = FFF6 = ( FFF4 + 1*sizeof(*p)) FFF4 + 2 (int)
р2 = FFF8 = ( FFF4 + 2*sizeof(*p)) FFF4 + 2*2
На одну и ту же область памяти (как видно из приведенного примера), может ссылаться несколько указателей различного типа. Но примененная к ним операция разадресации даст разные результаты.
При смешивании в выражении указателей разных типов явное преобразование типов требуется для всех указателей, кроме void*.
Явное приведение типов указателей позволяет получить адрес объекта любого типа:
type *p;
p = (type*) &object;
Значение указателя p позволяет работать с переменной object как объектом типа type.
51. Работа с динамической памятью. Динамические массивы.
В языке Си размерность массива при объявлении должна задавать-
ся константным выражением. При необходимости работы с массивами переменной размерности вместо массива достаточно объявить указатель требуемого типа и присвоить ему адрес свободной области памяти (захватить память). После обработки массива занятую память надо освободить. Библиотечные функции работы с памятью описаны в файле alloc.h. Пример создания динамического массива:
float *x;
int n;
printf("\nРазмерность - "); scanf(" %d",&n);
if ((x = calloc(n, sizeof(*x)))==NULL) { // Захват памяти
printf("\n Предел размерности “);
exit(1); }
else {
printf("\n Массив создан !");
...
for (i=0; i<n; i++)
printf("\n%f",x[i]);
...
free(x); // Освобождение памяти
}
В С++ введены две операции: захват памяти - new и освобождение захваченной ранее памяти - delete.
Общий формат записи: указатель = new тип (значение);
Пример создания одномерного динамического массива
Массив объявляем указателем.
...
double *x;
int i, n;
...
puts(" Введите размер массива: ");
scanf(“%d”, &n);
x = new double [n] ;
if (x == NULL) {
puts(" Предел размерности ! ");
return; }
for (i=0; i<n; i++) // Ввод элементов массива
scanf(“%lf”, &x[i]);
...
delete [ ]x; // Освобождение памяти
