
- •1. Диаграмма состояния Fe-Fe3c. Фазовые превращения в стали при кристаллизации и охлаждении в литейной форме.
- •2.Особенности технологии плавки и получения отливок из высокохромистых чугунов.
- •1.Основные принципы выбора легирующих элементов для получения заданной структуры и свойств в отливках из высоколегированных сталей. Структурна диаграмма Шеффлера.
- •2.Технология плавки сталей в основных дуговых печах методом окисления.
- •3. Роль графита в структуре чугуна. Современные представления о процессе графитизации и формообразовании графита.
- •1. Неметаллические включения в литой стали. Классификация нв, их влияние на качество стальных отливок. Методы рафинирования стали от нв и нейтрализации их вредного воздействия.
- •3. Влияние технологических факторов на состав и температуру при ваграночной плавке.
- •4. Особенности конструирования отливок из Хромистых чугунов.
- •1.Растворимость газов в жидкой и твердой стали. Влияние элементов на растворимость водорода и азота. Влияние газов на качество стальных отливок. Методы устранения их вредного влияния.
- •2. Коррозионностойкие стали. Требования к структуре и химическому составу. Особенности изготовления отливок из этих сталей.
- •3.Исходные материалы для ваграночной плавки чугуна и процессы, протекающие при плавке чугуна в коксовой вагранке.
- •4.Свойства хромистых чугунов (износостойкость, прочность) в зависимости от содержания с, структуры металлической основы.
- •2. Низколегированные стали. Области их применения. Особенности технологического процесса изготовления отливки.
- •3.Методы модифицирования чугуна с шаровидной формой графита. Техника безопасности при модифицировании.
- •4.Технология выплавки чугуна в электродуговых печах. Дуплекс процессы, их варианты и область применения.
- •1. Линейная и литейная усадка стал, факторы, влияющие на ее величину. Роль литейной усадки в формировании качества отливок.
- •2. Дефекты в стальных отливках. Причины их возникновения и меры по их устранению.
- •3.Графитизация чугуна. Механизм процесса и влияющие на него факторы.
- •1. Газовые дефекты в стальных отливках. Причины и механизм их образования. Меры предупреждения.
- •2. Варианты плавки стали в кислой электродуговой печи. Их возможности, достоинства и недостатки.
- •3.Внутренние напряжения в отливках. Образование горячих и холодных трещин в отливках. Методы снижения напряжений и стабилизации их размеров.
- •4.Технологические свойства хромистых чугунов (литейные, обрабатываемость).
- •1. Роль примесных и легирующих элементов на формирование структуры и свойств стальных отливок.
- •2. Особенности технологии плавки низкоуглеродистой высоколегированной хромоникелевой стали.
- •3.Технологические варианты получения конструкционных чугунов различных марок.
- •4.Меры по обеспечению безопасной работы в плавильных отделениях чугунолитейных цехов. Методы защиты от вредных выбросов плавильных агрегатов.
- •1. Ликвация элементов при кристаллизации стали. Закономерности формирования внутрикристаллической и зональной ликвации. Влияние их на дефектность отливок. Методы их устранения или нейтрализации.
- •2. Особенности технологии плавки стали в дуговой печи с частичным окислением.
- •3.Кинтетика и механизм графитизации при отжиге белого чугуна. Режимы отжига отливок для получения перлитного и ферритного ковкого чугуна.
- •4.Технология выплавки чугуна в индукционных печах. Технико-экономические показатели различных способов выплавки.
- •1. Термическая обработка стальных отливок. Ее виды, назначение и достигаемые цели.
- •2. Влияние перегрева расплава, модифицирования и скорости охлаждения на формирование структуры стали в отливках.
- •3. Варианты технологического процесса получения отливок из ковкого чугуна с заданной структурой металлической матрицы.
- •1. Доля стального и чугунного литья в структуре производства отливок в рф и в мире. Пути снижения металлоемкости отливок.
- •2. Плавка стали в индукционных печах. Металлургические возможности улучшения качества расплава.
- •3.Механизм сфероидизации графита.
- •4. Антифрикционные чугуны: требования к хим.Составу и свойствам, области применения. Особенности технологии производства отливок из этих чугунов.
- •1. Классификация отливок из конструкционных сталей. Требования, предъявляемые к отливкам различного назначения.
- •2. Отливки из хладостойких сталей. Особенности технологического процесса их изготовления.
- •3. Литейная и линейная усадка. Предусадочное расширение, перлитное расширение и послеперлитная усадка.
- •4. Отливки из коррозионностойких чугунов. Марки, химический состав, область применения.
- •1.Литейные свойства сталей и их связь с диаграммой состояния.
- •2. Диаграмма Шеффлера. Стали ферритного, мартенситного, аустенитного классов.
- •3.Усадка. Изменение объема в жидком состоянии, в интервале кристаллизации, в твердом состоянии.
- •4.Отливки из износостойких чугунов. Марки, состав. Чугуны отвечающие принципу Шарпи.
- •1.Газы в сталях. Факторы, влияющие на их растворимость. Методы предупреждения формирования газовых дефектов.
- •2. В отливках из стали 110г13л часто возникают горячие трещины. Установить возможные причины их возникновения и предложить меры по устранению.
- •3. Литейные свойства чугунов. Жидкотекучесть, заполняемость. Основные факторы влияющие на жидкотекучесть.
- •4.Отливки из жаростойких чугунов. Марки, химический состав, область применения.
- •1. Влияние перегрева на литейные свойства сталей и формирование структуры отливок.
- •2. При производстве отливок из аустенитной стали возникла необходимость частично заменить никель. Предложите возможные варианты его замены и внесите изменения в технологию приготовления расплава.
- •3.Степень графитизации чугуна. Модифицирование, типы модификаторов и механизм их действия.
- •4. Классификация легированных чугунов по свойствам и составу
- •1. Усадочные процессы. Формирование усадочных раковин и пор в стальных отливках.
- •2. Высокомарганцевая сталь. Особенности ее структуры и свойств. Технология плавки.
- •3. Методы модифицирования и особенности технологии получения отливок из сч высоких марок.
- •4. Жаропрочные чугуны, химический состав, марки, область применения.
- •1. Роль неметаллических включений в формировании структуры и свойств стальных отливок.
- •2. При изготовлении отливок из углеродистой стали возникла необходимость повысить прочностные свойства. Предложить возможные способы решения данной задачи.
- •3. Плавка чугуна. Плавильные агрегаты, флюсы, топливо, шихтовые материалы.
- •4. Отливки из чугуна с вермигулярным графитом. Свойства и область применения.
- •1. Внутренние напряжения в стальных отливках. Причины их возникновения. Дефекты в стальных отливках, вызываемые внутренними напряжениями
- •3. Влияние химического состава, то, условий охлаждения и других факторов на формирование структуры чугунных отливок.
- •4.Марки, Химический состав, структура и свойства ковкого чугуна
- •Влияние состава сталей на их склонность к трещинообразованию
- •2.Чем отличаются технологии изготовления отливок из сталей перлитного и аустенитого классов
- •4.Марки, химический состав, структура и свойства чугунов с шаровидной формой графита
- •3.Понятия об углеродном эквиваленте и степени эвтектичности. Процессы формирования литой структуры
- •Отливки из хладостойких сталей. Особенности технологического процесса их изготовления
- •2.Как формируется зональная ликвация элементов в отливках? Можно ли её уменьшить или устранить?
- •3.Классификация чугунов по степени графитизации, формам графита, структуре металлической основы. Фазы и структурные составляющие чугунов.
- •4.Марки, химический состав, структура и свойства чугунов с пластинчатой формой графита.
2. Диаграмма Шеффлера. Стали ферритного, мартенситного, аустенитного классов.
Стали аустенитного класса
Стали аустенитногокласса – в основном хромоникелевые стали с содержанием Cr и Ni в пределах от 7 до 25 % каждого, наряду с которыми присутствуют W, Mo, Ti, Nb и др.
Стали мартенситного класса
Стали мартенситного класса содержат 4,5–12 % Cr, а также в значительно меньшем количестве Ni, W, Mo, V.
Стали марок 15Х5, 15Х5М, 15Х5ВФ и 15Х8ВФ широко применяют для изготовления элементов аппаратуры нефтеперерабатывающих заводов – деталей насосов, задвижек, крепежных деталей, крекинговых труб, работающих при температурах 550–600 °С. Стали этой же группы с более высоким содержанием Cr (6–10 %) и с повышенным содержанием Si (2–3 %), в основном, применяют для изготовления клапанов двигателей внутреннего сгорания.
Сталь 11Х11Н2ВМФ применяют для дисков компрессоров и для других деталей, работающих при температурах до 600 °С с ограниченным сроком службы.
Стали мартенситно-ферритного класса
Стали мартенситно-ферритного класса содержат в структуре кроме мартенсита 10–25 % феррита. Основная легирующая добавка и в этих сталях — Cr (11–13 %), наряду с которым присутствуют менее значительные присадки Ni, W, Mo, Nb, V (модифицированные хромистые стали). Их термическая обработка заключается либо в закалке с отпуском, либо в нормализации с отпуском. Механические свойства при надлежащей температуре отпуска практически равноценны. Уровень жаропрочных свойств после оптимальной термической обработки для большинства сталей мартенситно-ферритного класса также примерно одинаков. Однако наиболее высокие (при обработке на одинаковую твердость) характеристики жаропрочности при 500–600 °С у стали 18Х12ВМБФР.
Эти стали изготовляют в виде сортового проката и применяют в турбостроении для лопаток и дисков турбин, а также для крепежных деталей.
Определить структуру стали в зависимости от ее химического состава позволяет диаграмма Шеффлера
3.Усадка. Изменение объема в жидком состоянии, в интервале кристаллизации, в твердом состоянии.
Усадка – совокупность явлений, приводящих к сокращению объема и линйных размеров сплава, залитого в форму, при его затвердевании и охлаждении.
- объемная усадка: εν=[Vф-Vо/Vо]*100%;
- линейная усадка: ε=[lф-lо/lо]*100%
- литейная усадка: ε=[lмод-lо/lо]*100%
Чем больше интервал кристаллизации сплава, тем протяженнее двухфазная область и тем больше склонность сплава к образованию рассеянных пор. Чистые металлы и сплавы, кристаллизующиеся в узком интервале, образуют небольшую двухфазную область и более склонны к образованию концентрированных раковин.
Интенсивное охлаждение способствует возникновению усадочной раковины.
Объемная усадка в жидком состоянии:
εVж = αVж*(tзал-tл); αVж – коэффициент усадки в жидком состоянии. Чем больше перегрев, тем больше объемная усадка в жидком состоянии.
Объемная усадка в интервале кристаллизации:
εV3= ε’Vж+ ε’Vтв; ε’Vж – усадка оставшейся жидкости; ε’Vтв – усадка образовавшейся твердой фазы. В интервале кристаллизации количество жидкой фазы изменяется с 1 до 0, а твердой фазы – от 0 до 1. условно можно считать, что во всем интервале кристаллизации ½ объема находится в жидком состоянии, а ½ - в твердом. Объемная усадка в твердом состоянии: ε’Vтв = αVтв*tс.