
- •Аксиомы поля. Поле комплексных чисел. Тригонометрическая запись комплексного числа.
- •Кольцо матриц над полем действительных чисел. Основные операции над матрицами. Свойства операций.
- •Определители. Теорема Лапласа. Свойства определителей.
- •Обратная матрица: метод присоединенной матрицы и метод элементарных преобразований
- •Теорема о ранге матрицы
- •Теорема Кронекера-Капелли
- •Решение слу. Метод Крамера, матричный метод, метод Гауса.
- •Однородные слу. Построение фундаментальной системы решений
- •Векторы. Основные понятия. Скалярное произведение, его свойства.
- •Пусть заданы векторы в прямоугольной системе координат
- •Векторное произведение. Свойства
- •Смешанное произведение. Свойства
- •Преобразование координат на плоскости. Параллельный перенос и поворот.
- •Кривые второго порядка. Каноническое уравнение эллипса.
- •Кривые второго порядка. Каноническое уравнение параболы и гиперболы.
- •Классификация кривых второго порядка. Приведение к каноническому виду. Кривая второго порядка может быть задана уравнением
- •Замена:
- •Шаг третий, окончательный.
- •17. Прямая в пространстве. Основные типы уравнений.
- •18. Метод сечений в пространстве. Эллипсоиды и гиперболоиды
- •19. Метод сечений в пространстве. Цилиндры и конусы
- •20. Линейные пространства. Основные понятия. Теорема о базисе.
- •21. Матрица перехода от базиса к базису
- •Пример поиска матрицы
- •22. Линейный оператор и его матрица
- •23. Собственные значения и собственные векторы линейных операторов
- •24. Приведение уравнения второго порядка к каноническому виду
- •25. Множества. Операции над множествами
- •26. Доказать: равномощность целых и рациональных чисел. Неравномощность действительных и натуральных чисел
- •27. Функция, последовательность. Предел функции, предел последовательности.
- •28. Теорема о пределе монотонной ограниченной последовательности. Теорема о пределе промежуточной функции
- •29. Свойства предела Предел функции
- •30. Первый замечательный предел
- •Первый замечательный предел
- •31. Второй замечательный предел
- •32. Неопределенности. Сравнение бесконечно малых. Таблица эквивалентных замен
- •3) Если данный предел: не существует, в этом случае мы ничего не можем сказать о сравниваемых функциях и поэтому говорят, что функции не сравнимы.
Смешанное произведение. Свойства
Рассмотрим произведение векторов а, b и с, составленное следующим образом: (ахb )•с. Здесь первые два вектора перемножаются векторно, а их результат скалярно на третий вектор. Такое произведение называется векторноскалярным, или смешанным, произведением трех векторов. Смешанное произведение представляет собой некоторое число.
Выясним геометрический смысл выражения (ахb )*с. Построим параллелепипед, ребрами которого являются векторы а, b , с и вектор d =ахb (см. рис. 22).
Имеем: (а х b) • с = d • с = |d| • прdс, |d|=|а х b| =S, где S — площадь параллелограмма, построенного на векторах а и b, прdс = Н Для правой тройки векторов и прdс = - Н для левой, где Н— высота параллелепипеда. Получаем: (axb )*c =S *(±H ), т. е. (axb )*c =±V , где V — объем параллелепипеда, образованного векторами а, b и с.
Таким образом, смешанное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах, взятому со знаком «плюс», если эти векторы образуют правую тройку, и со знаком «минус», если они образуют левую тройку.
Свойства смешанного произведения
1. Смешанное произведение не меняется при циклической перестановке его сомножителей, т. е. (а х b)•с=(b х с)•а=(с х а)•b .
Действительно, в этом случае не изменяется ни объем параллелепипеда, ни ориентация его ребер
2. Смешанное произведение не меняется при перемене местами знаков вкторного и скалярного умножения, т. е. (ахb )•с=а*(bx с).
Действительно, (ахb )•с=±V и а•(b хс)=(b хс)•а=±V . Знак в правой части этих равенств берем один и тот же, так как тройки векторов а , b , с и b , с , а — одной ориентации.
Следовательно, (a хb )•с=a (b хс). Это позволяет записывать смешанное произведение векторов (а х b)с в виде abc без знаков векторного, скалярного умножения.
3. Смешанное произведение меняет свой знак при перемене мест любых вух векторов-сомножителей, т. е. abc =-acb , abc =-bac , abc =-cba .
Действительно, такая перестановка равносильна перестановке сомножителей в векторном произведении, меняющей у произведения знак.
4.Смешанное произведение ненулевых векторов а, b и с равно нулю огда и только тогда, когда они компланарны.
Если abc =0 , то а, b и с— компланарны.
Допустим, что это не так. Можно было бы построить параллелепипед с объемом V 0. Но так как abc =±V , то получили бы, что abc0 . Это противоречит условию: abc =0.
Обратно, пусть векторы а, b , с — компланарны. Тогда вектор d =ахb будет перпендикулярен плоскости, в которой лежат векторы а, b ,с, и следовательно, d с. Поэтому d •с=0, т. е. abc =0.
Выражение смешанного произведения через координаты
Пусть заданы векторы a =ахi +ayj +azk , b =bxi +byj +bzk , с=cxi +cyj +czk . Найдем их смешанное произведение, используя выражения в координатах для векторного и скалярного произведений:
Полученную формулу можно записать короче:
так как правая часть равенства (8.1) представляет собой разложение определителя третьего порядка по элементам третьей строки.
Итак, смешанное произведение векторов равно определителю третьего порядка, составленному из координат перемножаемых векторов.
Некоторые приложения смешанного произведения
Определение взаимной ориентации векторов в пространстве
Определение взаимной ориентации векторов а, b и с основано на следующих соображениях. Если abc >0 , то а , b , с — правая тройка; если abc <0 , то а, b , с - левая тройка.
Установление компланарности векторов
Векторы а, b и с компланарны тогда и только тогда, когда их смешанное произведение равно нулю
Определение объемов параллелепипеда и треугольной пирамиды
Нетрудно показать, что объем параллелепипеда, построенного на векторах а, b и с вычисляется как V=|аbс|, а объем треугольной пирамиды, построенной на этих же векторах, равен V =1/6*|abc |.