
- •Аксиомы поля. Поле комплексных чисел. Тригонометрическая запись комплексного числа.
- •Кольцо матриц над полем действительных чисел. Основные операции над матрицами. Свойства операций.
- •Определители. Теорема Лапласа. Свойства определителей.
- •Обратная матрица: метод присоединенной матрицы и метод элементарных преобразований
- •Теорема о ранге матрицы
- •Теорема Кронекера-Капелли
- •Решение слу. Метод Крамера, матричный метод, метод Гауса.
- •Однородные слу. Построение фундаментальной системы решений
- •Векторы. Основные понятия. Скалярное произведение, его свойства.
- •Пусть заданы векторы в прямоугольной системе координат
- •Векторное произведение. Свойства
- •Смешанное произведение. Свойства
- •Преобразование координат на плоскости. Параллельный перенос и поворот.
- •Кривые второго порядка. Каноническое уравнение эллипса.
- •Кривые второго порядка. Каноническое уравнение параболы и гиперболы.
- •Классификация кривых второго порядка. Приведение к каноническому виду. Кривая второго порядка может быть задана уравнением
- •Замена:
- •Шаг третий, окончательный.
- •17. Прямая в пространстве. Основные типы уравнений.
- •18. Метод сечений в пространстве. Эллипсоиды и гиперболоиды
- •19. Метод сечений в пространстве. Цилиндры и конусы
- •20. Линейные пространства. Основные понятия. Теорема о базисе.
- •21. Матрица перехода от базиса к базису
- •Пример поиска матрицы
- •22. Линейный оператор и его матрица
- •23. Собственные значения и собственные векторы линейных операторов
- •24. Приведение уравнения второго порядка к каноническому виду
- •25. Множества. Операции над множествами
- •26. Доказать: равномощность целых и рациональных чисел. Неравномощность действительных и натуральных чисел
- •27. Функция, последовательность. Предел функции, предел последовательности.
- •28. Теорема о пределе монотонной ограниченной последовательности. Теорема о пределе промежуточной функции
- •29. Свойства предела Предел функции
- •30. Первый замечательный предел
- •Первый замечательный предел
- •31. Второй замечательный предел
- •32. Неопределенности. Сравнение бесконечно малых. Таблица эквивалентных замен
- •3) Если данный предел: не существует, в этом случае мы ничего не можем сказать о сравниваемых функциях и поэтому говорят, что функции не сравнимы.
Пусть заданы векторы в прямоугольной системе координат
тогда
Скалярное произведение векторов.
Определение. Скалярным произведением векторов и называется число, равное произведению длин этих сторон на косинус угла между ними.
= cos
Свойства скалярного произведения
1. Скалярное произведение обладает переместительным свойством: ab=ba
Решение:
5. Если векторы а и b (ненулевые) взаимно перпендикулярны, то их скалярное произведение равно нулю, т. е. если a b, то ab=0. Справедливо и обратное утверждение: если ab=0 и а 0 b, то а b
.
Выражение скалярного произведения через координаты
Пусть заданы два вектора
Найдем скалярное произведение векторов, перемножая их как многочлены (что законно в силу свойств линейности скалярного произведения) и пользуясь таблицей скалярного произведения векторов i, j, k:
т.е
Итак, скалярное произведение векторов равно сумме произведений их одноименных координат.
Векторное произведение. Свойства
Три некомпланарных вектора a, b и с, взятые в указанном порядке, образуют правую тройку, если с конца третьего вектора с кратчайший поворот от первого вектора а ко второму вектору b виден совершающимся против часовой стрелки, и левую, если по часовой (см. рис. 16).
Векторным произведением вектора а на вектор b называется вектор с, который:
1. Перпендикулярен векторам a и b, т. е. са и сb;
2. Имеет
длину, численно равную площади
параллелограмма, построенного на
векторах а и b как
на сторонах (см. рис. 17), т. е.
3.Векторы a, b и с образуют правую тройку.
Векторное произведение обозначается а х b или [а,b]. Из определения векторного произведения непосредственно вытекают следующие соотношения между ортами i , j и k (см. рис. 18):
i х j = k, j х k = i, k х i = j. Докажем, например, что iхj=k.
1) ki, kj;
2) |k|=1, но | i x j| = |i| • |J| • sin(90°)=1;
3) векторы i , j и k образуют правую тройку (см. рис. 16).
Свойства векторного произведения
1. При перестановке сомножителей векторное произведение меняет знак, т.е. а хb =(b хa ) (см. рис. 19).
Векторы ахb и b ха коллинеарны, имеют одинаковые модули (площадь параллелограмма остается неизменной), но противоположно направлены (тройки а , b , а хb и a , b , bxa противоположной ориентации). Стало быть axb = -(bxa ).
2. Векторное произведение обладает сочетательным свойством относительно скалярного множителя, т. е. (а хb ) = (а ) х b = а х (b ).
Пусть >0. Вектор (ахb ) перпендикулярен векторам а и b . Вектор ( а)хb также перпендикулярен векторам а и b (векторы а, а лежат в одной плоскости). Значит, векторы (ахb ) и ( а)хb коллинеарны. Очевидно, что и направления их совпадают. Имеют одинаковую длину:
Поэтому (a хb )= ахb . Аналогично доказывается при <0.
3. Два ненулевых вектора а и b коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору, т. е. а||b <=>ахb =0.
В частности, i *i =j *j =k *k =0.
4. Векторное произведение обладает распределительным свойством:
(a+b) хс= ахс+b хс.
Примем без доказательства.
Выражение векторного произведения через координаты
Мы будем использовать таблицу векторного произведения векторов i , j и k :
если направление кратчайшего пути от первого вектора к второму совпадает с направлением стрелки, то произведение равно третьему вектору, если не совпадает — третий вектор берется со знаком «минус».
Пусть заданы два вектора а=ахi +ayj +azk и b =bxi +byj +bzk . Найдем векторное произведение этих векторов, перемножая их как многочлены (согласно свойств векторного произведения):
Полученную формулу можно записать еще короче:
Некоторые приложения векторного произведения
Установление коллинеарности векторов
Нахождение площади параллелограмма и треугольника
Согласно определению векторного произведения векторов а и b |а хb | = |а| * |b |sin , т. е. S пар = |а х b |. И, значит, S =1/2|а х b |.