Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы математика.docx
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
1.1 Mб
Скачать
  1. Обратная матрица: метод присоединенной матрицы и метод элементарных преобразований

Элементарные преобразования.

Определение. Элементарными преобразованиями матрицы назовем следующие преобразования:

1) умножение строки на число, отличное от нуля;

2) прибавление к одной строке другой строки;

3) перестановка строк;

4) вычеркивание (удаление) одной из одинаковых строк (столбцов);

5) транспонирование;

Те же операции, применяемые для столбцов, также называются элементарными преобразованиями.

С помощью элементарных преобразований можно к какой-либо строке или столбцу прибавить линейную комбинацию остальных строк ( столбцов ).

Обратная матрица.

Определим операцию деления матриц как операцию, обратную умножению.

Определение. Если существуют квадратные матрицы Х и А, удовлетворяющие условию:

XA = AX = E,

где Е - единичная матрица того же самого порядка, то матрица Х называется обратной к матрице А и обозначается А-1.

Каждая квадратная матрица с определителем, не равным нулю имеет обратную матрицу и притом только одну.

Обратную матрицу   можно найти по следующей формуле:

, где   – определитель матрицы   – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы  .

1) Находим определитель матрицы.

2) Находим матрицу миноров  .

3) Находим матрицу алгебраических дополнений  .

4) Находим транспонированную матрицу алгебраических дополнений  .

 – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы  .

 Для матрицы   найти A-1.

Решение. Находим сначала детерминант матрицы А      значит, обратная матрица существует и мы ее можем найти по формуле:   , где Аi j (i,j=1,2,3) - алгебраические дополнения элементов аi j исходной матрицы.                    

                    

                   

                  

 откуда    .

Вычисление A-1 по формуле (1) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить A-1 с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ранга матрицы можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

Cвойства обратных матриц.

Укажем следующие свойства обратных матриц:

1) (A-1)-1 = A; 2) (AB)-1 = B-1A-1 3) (AT)-1 = (A-1)T.

  1. Теорема о ранге матрицы

Ранг матрицы А - максимальный порядок неравного нулю минора

Минор, определяющий ранг матрицы, называется Базисным минором. Строки и столбцы, формирующие БМ, назвыаются базисными строками и столбцами.

Обозначения: r(A), R(A), Rang A.

 

Замечание. Очевидно, что значение ранга матрицы не может превышать меньшей из ее размерностей.

Для любой матрицы ее минорный, строчный и столбцевой ранги совпадают.

Доказательство. Пусть минорный ранг матрицы A равен r. Покажем, что строчный ранг тоже равен r. Для этого можно считать, что обратимый минор M порядка r находится в первых r строках матрицы A. Отсюда следует, что первые r строк матрицы A линейно независимы и набор строк минора M линейно независим. Пусть a -- строка длины r, составленная из элементов i-ой строки матрицы  , которые расположены в тех же столбцах, что и минор M. Так как строки минора M составляют базу в kr , то a -- линейная комбинация строк минора M. Вычтем из i-ой строки A такую же линейную комбинацию первых r строк матрицы A. Если получится строка, содержащая ненулевой элемент в столбце с номером t, то рассмотрим минор M1 порядка r+1матрицы A, добавив к строкам минора  -ю строку матрицы A и к столбцам минора  -ый столбец матрицы A (говорят, что минор M1 получен окаймлением минора M с помощью i-ой строки и t-го столбца матрицы A). По нашему выбору t, этот минор обратим (достаточно вычесть из последней строки этого минора выбранную выше линейную комбинацию первых r строк, а затем разложить его определитель по последней строке, чтобы убедиться, что этот определитель с точностью до ненулевого скалярного множителя совпадает с определителем минора M. По определению r такая ситуация невозможна и, значит, после преобразования i-я строка A станет нулевой. Другими словами, исходная i-я строка -- линейная комбинация первых r строк матрицыA. Мы показали, что первые r строк составляют базу набора строк матрицы A, то есть строчный ранг A равен r. Чтобы доказать, что столбцевой ранг равен r, достаточно в приведенном выше рассуждении "строки" и "столбцы" поменять местами. Теорема доказана.

Эта теорема показывает, что нет смысла различать три ранга матрицы, и в дальнейшем под рангом матрицы мы будем понимать строчный ранг, помня о том, что он равен и столбцевому, и минорному рангу (обозначение r(A) -- ранг матрицы A). Заметим еще, что из доказательства теоремы о ранге следует, что ранг матрицы совпадает с размерностью любого такого обратимого минора матрицы, что все окаймляющие его миноры (если они вообще существуют) вырождены.