
- •Аксиомы поля. Поле комплексных чисел. Тригонометрическая запись комплексного числа.
- •Кольцо матриц над полем действительных чисел. Основные операции над матрицами. Свойства операций.
- •Определители. Теорема Лапласа. Свойства определителей.
- •Обратная матрица: метод присоединенной матрицы и метод элементарных преобразований
- •Теорема о ранге матрицы
- •Теорема Кронекера-Капелли
- •Решение слу. Метод Крамера, матричный метод, метод Гауса.
- •Однородные слу. Построение фундаментальной системы решений
- •Векторы. Основные понятия. Скалярное произведение, его свойства.
- •Пусть заданы векторы в прямоугольной системе координат
- •Векторное произведение. Свойства
- •Смешанное произведение. Свойства
- •Преобразование координат на плоскости. Параллельный перенос и поворот.
- •Кривые второго порядка. Каноническое уравнение эллипса.
- •Кривые второго порядка. Каноническое уравнение параболы и гиперболы.
- •Классификация кривых второго порядка. Приведение к каноническому виду. Кривая второго порядка может быть задана уравнением
- •Замена:
- •Шаг третий, окончательный.
- •17. Прямая в пространстве. Основные типы уравнений.
- •18. Метод сечений в пространстве. Эллипсоиды и гиперболоиды
- •19. Метод сечений в пространстве. Цилиндры и конусы
- •20. Линейные пространства. Основные понятия. Теорема о базисе.
- •21. Матрица перехода от базиса к базису
- •Пример поиска матрицы
- •22. Линейный оператор и его матрица
- •23. Собственные значения и собственные векторы линейных операторов
- •24. Приведение уравнения второго порядка к каноническому виду
- •25. Множества. Операции над множествами
- •26. Доказать: равномощность целых и рациональных чисел. Неравномощность действительных и натуральных чисел
- •27. Функция, последовательность. Предел функции, предел последовательности.
- •28. Теорема о пределе монотонной ограниченной последовательности. Теорема о пределе промежуточной функции
- •29. Свойства предела Предел функции
- •30. Первый замечательный предел
- •Первый замечательный предел
- •31. Второй замечательный предел
- •32. Неопределенности. Сравнение бесконечно малых. Таблица эквивалентных замен
- •3) Если данный предел: не существует, в этом случае мы ничего не можем сказать о сравниваемых функциях и поэтому говорят, что функции не сравнимы.
Определители. Теорема Лапласа. Свойства определителей.
Определи́тель (или детермина́нт) — одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной матрицы (то есть такой, у которой количество строк и столбцов равно).
Теорема Лапласа. Если выбрано s строк матрицы с номерами i1, … ,is, то определитель этой матрицы равен сумме произведений всех миноров, расположенных в выбранных строках на их алгебраические дополнения.
det
A
=
,
где (1)
М1к – детерминант матрицы, полученной из исходной вычеркиванием первой строки и k – го столбца. Следует обратить внимание на то, что определители имеют только квадратные матрицы, т.е. матрицы, у которых число строк равно числу столбцов.
Для указанной матрицы А число М1к называется дополнительным минором элемента матрицы a1k. Таким образом, можно заключить, что каждый элемент матрицы имеет свой дополнительный минор. Дополнительные миноры существуют только в квадратных матрицах
Дополнительный минор произвольного элемента квадратной матрицы aij равен определителю матрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца.
Миноры.
Определение. Если в матрице А выделить несколько произвольных строк и столько же произвольных столбцов, то определитель, составленный из элементов, расположенных на пересечении этих строк и столбцов называется минором матрицы А. Если выделено s строк и столбцов, то полученный минор называется минором порядка s.
Заметим, что вышесказанное применимо не только к квадратным матрицам, но и к прямоугольным.
Если вычеркнуть из исходной квадратной матрицы А выделенные строки и столбцы, то определитель полученной матрицы будет являться дополнительным минором.
Алгебраические дополнения.
Определение. Алгебраическим дополнением минора матрицы называется его дополнительный минор, умноженный на (-1) в степени, равной сумме номеров строк и номеров столбцов минора матрицы.
В частном случае, алгебраическим дополнением элемента матрицы называется его минор, взятый со своим знаком, если сумма номеров столбца и строки, на которых стоит элемент, есть число четное и с противоположным знаком, если нечетное.
Свойства.
Если квадратная матрица AT является транспонированной матрицей A, то их определители совпадают |AT | = |A|, т.е. определитель не меняется, если заменить его строки столбцами и обратно, например, для определителя третьего порядка
.
Доказательство проводится проверкой, т.е. сравнением обеих частей записанного равенства. Вычислим определители, стоящие слева и справа:
При перестановке 2-х строк или столбцов определитель изменит знак на противоположный, сохраняя абсолютную величину, т.е., например,
Доказательство проводится аналогично доказательству свойства 1 сравнением обеих частей. Проведём его для определителя второго порядка.
.
Для определителя третьего порядка проверьте самостоятельно.
Если определитель имеет две одинаковые строки или столбца, то он равен нулю. Например,
.
Действительно, если переставить здесь 2-ю и 3-ю строки, то по свойству 2 этот определитель должен изменить знак, но сам определитель в данном случае не меняется, т.е. получаем |A| = –|A| или |A| = 0.
Общий множитель строки или столбца можно выносить за знак определителя. Например,
.
Доказательство проводится проверкой, как и свойство 1. (Самостоятельно)
Если все элементы какой–либо строки или столбца определителя равны нулю, то сам определитель равен нулю. (Доказательство – проверкой).
Если все элементы какой–либо строки или столбца определителя представлены в виде суммы 2-х слагаемых, то определитель можно представить в виде суммы 2-х определителей по формуле, например,
.
Доказательство - проверкой, аналогично свойству 1.
Если к какой–либо строке (или столбцу) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель не изменит своей величины. Например,
.
Докажем
это равенство, используя предыдущие
свойства определителя.