Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы математика.docx
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
1.1 Mб
Скачать

28. Теорема о пределе монотонной ограниченной последовательности. Теорема о пределе промежуточной функции

Всякая монотонная ограниченная последовательность имеет предел.

В качестве примера на применение этого признака рассмотрим последовательность.

По формуле бинома Ньютона

Из равенства (15.3) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число 1/n — убывает, поэтому величины (1-1/n), (1-1/n), ... возрастают.

Поэтому последовательность {хn} = { (1+1/n)n }— возрастающая, при этом

Покажем, что она ограничена. Заменим каждую скобку в правой части равенства (15.3) на единицу; правая часть увеличится, получим неравенство

Усилим полученное неравенство, заменив числа 3, 4, 5,..., стоящие в знаменателях дробей, числом 2:

Сумму в скобке найдем по формуле суммы членов геометрической прогрессии:

Поэтому

Итак, последовательность ограничена, при этом для n є N выполняются неравенства (15.4) и (15.5):

Следовательно, на основании теоремы Вейерштрасса последовательность имеет предел, обозначаемый обычно буквой е:

 (о пределе промежуточной функции). Если функция ƒ(х) заключена между двумя функциями φ(х) и g(х), стремящимися к одному и тому же пределу, то она также стремится к этому пределу, т. е. если

то

▼Из равенств (17.6) вытекает, что для любого ε>0 существуют две окрестности δ1 и δ2 точки хо, в одной из которых выполняется неравенство |φ(х)-А|<ε, т. е.

 

-ε<φ(х)-А<ε,                                        (17.8)

а в другой |g(х)-А|<ε, т. е.

-ε<g(х)-А<ε.                                        (17.9)

 

Пусть δ — меньшее из чисел δ1 и δ2. Тогда в δ-окрестности точки x0 выполняются оба неравенства (17.8) и (17.9). Из неравенств (17.7) находим, что

φ(x)-A≤f(x)-A≤g(x)-A                         (17.10)

С учетом неравенств (17.8) и (17.9) из неравенства (17.10) следуют неравенства -ε<ƒ(х)-А<ε или |ƒ(х)-А|<ε. Мы доказали, что

 ε>0  δ>0  x: 0<|х-х0|<δ  |ƒ(х)-А|<ε,  то есть lim ƒ(х)=А при х –> x0.

29. Свойства предела Предел функции

Предел функции — одно из основных понятий математического анализа. Функция f(x) имеет предел L в точке x0, если для всех значений x, достаточно близких к x0, значение f(x) близко к L.

Предел функции на бесконечности описывает поведение значения данной функции, когда её аргумент становится бесконечно большим (по абсолютной величине).

Предел функции обозначается как

или через символ предела функции:

Если при прочтении данного материала у Вас возникнут вопросы, Вы всегда можете задать их на нашем форуме, также на форуме Вам помогут решить задачи по математике, геометрии, химии, теории вероятности и многим другим предметам.

Свойства пределов функции

1) Предел постоянной величины

Предел постоянной величины равен самой постоянной величине:

2) Предел суммы

Предел суммы двух функций равен сумме пределов этих функций:

Аналогично предел разности двух функций равен разности пределов этих функций.

Расширенное свойство предела суммы:

Предел суммы нескольких функций равен сумме пределов этих функций:

Аналогично предел разности нескольких функций равен разности пределов этих функций.

3) Предел произведения функции на постоянную величину

Постоянный коэффициэнт можно выносить за знак предела:

4) Предел произведения

Предел произведения двух функций равен произведению пределов этих функций:

Расширенное свойство предела произведения

Предел произведения нескольких функций равен произведению пределов этих функций:

5) Предел частного

Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю: