- •Аксиомы поля. Поле комплексных чисел. Тригонометрическая запись комплексного числа.
- •Кольцо матриц над полем действительных чисел. Основные операции над матрицами. Свойства операций.
- •Определители. Теорема Лапласа. Свойства определителей.
- •Обратная матрица: метод присоединенной матрицы и метод элементарных преобразований
- •Теорема о ранге матрицы
- •Теорема Кронекера-Капелли
- •Решение слу. Метод Крамера, матричный метод, метод Гауса.
- •Однородные слу. Построение фундаментальной системы решений
- •Векторы. Основные понятия. Скалярное произведение, его свойства.
- •Пусть заданы векторы в прямоугольной системе координат
- •Векторное произведение. Свойства
- •Смешанное произведение. Свойства
- •Преобразование координат на плоскости. Параллельный перенос и поворот.
- •Кривые второго порядка. Каноническое уравнение эллипса.
- •Кривые второго порядка. Каноническое уравнение параболы и гиперболы.
- •Классификация кривых второго порядка. Приведение к каноническому виду. Кривая второго порядка может быть задана уравнением
- •Замена:
- •Шаг третий, окончательный.
- •17. Прямая в пространстве. Основные типы уравнений.
- •18. Метод сечений в пространстве. Эллипсоиды и гиперболоиды
- •19. Метод сечений в пространстве. Цилиндры и конусы
- •20. Линейные пространства. Основные понятия. Теорема о базисе.
- •21. Матрица перехода от базиса к базису
- •Пример поиска матрицы
- •22. Линейный оператор и его матрица
- •23. Собственные значения и собственные векторы линейных операторов
- •24. Приведение уравнения второго порядка к каноническому виду
- •25. Множества. Операции над множествами
- •26. Доказать: равномощность целых и рациональных чисел. Неравномощность действительных и натуральных чисел
- •27. Функция, последовательность. Предел функции, предел последовательности.
- •28. Теорема о пределе монотонной ограниченной последовательности. Теорема о пределе промежуточной функции
- •29. Свойства предела Предел функции
- •30. Первый замечательный предел
- •Первый замечательный предел
- •31. Второй замечательный предел
- •32. Неопределенности. Сравнение бесконечно малых. Таблица эквивалентных замен
- •3) Если данный предел: не существует, в этом случае мы ничего не можем сказать о сравниваемых функциях и поэтому говорят, что функции не сравнимы.
27. Функция, последовательность. Предел функции, предел последовательности.
Функция (отображение, оператор, преобразование) — математическое понятие, отражающее связь между элементами множеств.
Функция
(отображение, операция, оператор) —
это закон или правило,
согласно которому каждому[3] элементу
из
множества
ставится
в соответствие единственный элемент
из
множества
[4].
При этом говорят, что функция задана на множестве , или что отображает в .
Если
элементу
сопоставлен
элемент
,
то говорят, что элемент
находится
в функциональной
зависимости
от
элемента
.
При этом
переменная
называетсяаргументом функции
или независимой переменной,
множество
называется областью
задания или областью
определения функции,
а элемент
,
соответствующий конкретному
элементу
— частным
значением функции
в
точке
.
Множество
всех
возможных частных значений
функции
называется
её областью
значений илиобластью
изменения.
Под числовой последовательностью х1, х2, x3,..., хn... понимается функция
xn=f(n) (15.1)
заданная на множестве N натуральных чисел. Кратко последовательность обозначается в виде {хn} или хn, nєN. Число x1 называется первым членом (элементом) последовательности, х2 — вторым,..., хn —общим или n-м членом последовательности.
Чаще всего последовательность задается формулой его общего члена.
Постоянное число а называется пределом последовательности {xn}, если для любого сколь угодно малого положительного числа ε > 0 существует номер N, что все значения xn, у которых n>N, удовлетворяют неравенству
|xn - a| < ε. (6.1)
Записывают
это следующим образом:
или
xn→ a.
Неравенство (6.1) равносильно двойному неравенству
a- ε < xn < a + ε, (6.2)
которое означает, что точки x n, начиная с некоторого номера n>N, лежат внутри интервала (a-ε, a+ε), т.е. попадают в какую угодно малую ε-окрестность точки а.
Последовательность, имеющая предел, называется сходящейся, в противном случае - расходящейся.
Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции xn = f(n) целочисленного аргумента n.
Пусть дана функция f(x) и пусть a - предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a. Точка a может принадлежать множеству D(f), а может и не принадлежать ему.
Определение 1. Постоянное число А называется предел функции f(x) при x→a, если для всякой последовательности {xn} значений аргумента, стремящейся к а, соответствующие им последовательности {f(xn)} имеют один и тот же предел А.
Это определение называют определением предел функции по Гейне, или “на языке последовательностей”.
Определение 2. Постоянное число А называется предел функции f(x) при x→a, если, задав произвольное как угодно малое положительное число ε, можно найти такое δ >0 (зависящее от ε), что для всех x, лежащих в ε-окрестности числа а, т.е. для x, удовлетворяющих неравенству 0 < x-a < ε, значения функции f(x) будут лежать в ε-окрестности числа А, т.е. |f(x)-A| < ε.
Это определение называют определением предел функции по Коши, или “на языке ε - δ“.
Определения 1 и 2 равносильны. Если функция f(x) при x → a имеет предел, равный А, это записывается в виде
.
(6.3)
В том случае, если последовательность {f(xn)} неограниченно возрастает (или убывает) при любом способе приближения x к своему пределу а, то будем говорить, что функция f(x) имеет бесконечный предел, и записывать это в виде:
Переменная величина (т.е. последовательность или функция), предел которой равен нулю, называется бесконечно малой величиной.
Переменная величина, предел которой равен бесконечности, называется бесконечно большой величиной.
|
***
|
***
Переменная
|

Рис.
8.
Бесконечно малая последовательность
.
Рис.
9.
Бесконечно малая последовательность