
- •Аксиомы поля. Поле комплексных чисел. Тригонометрическая запись комплексного числа.
- •Кольцо матриц над полем действительных чисел. Основные операции над матрицами. Свойства операций.
- •Определители. Теорема Лапласа. Свойства определителей.
- •Обратная матрица: метод присоединенной матрицы и метод элементарных преобразований
- •Теорема о ранге матрицы
- •Теорема Кронекера-Капелли
- •Решение слу. Метод Крамера, матричный метод, метод Гауса.
- •Однородные слу. Построение фундаментальной системы решений
- •Векторы. Основные понятия. Скалярное произведение, его свойства.
- •Пусть заданы векторы в прямоугольной системе координат
- •Векторное произведение. Свойства
- •Смешанное произведение. Свойства
- •Преобразование координат на плоскости. Параллельный перенос и поворот.
- •Кривые второго порядка. Каноническое уравнение эллипса.
- •Кривые второго порядка. Каноническое уравнение параболы и гиперболы.
- •Классификация кривых второго порядка. Приведение к каноническому виду. Кривая второго порядка может быть задана уравнением
- •Замена:
- •Шаг третий, окончательный.
- •17. Прямая в пространстве. Основные типы уравнений.
- •18. Метод сечений в пространстве. Эллипсоиды и гиперболоиды
- •19. Метод сечений в пространстве. Цилиндры и конусы
- •20. Линейные пространства. Основные понятия. Теорема о базисе.
- •21. Матрица перехода от базиса к базису
- •Пример поиска матрицы
- •22. Линейный оператор и его матрица
- •23. Собственные значения и собственные векторы линейных операторов
- •24. Приведение уравнения второго порядка к каноническому виду
- •25. Множества. Операции над множествами
- •26. Доказать: равномощность целых и рациональных чисел. Неравномощность действительных и натуральных чисел
- •27. Функция, последовательность. Предел функции, предел последовательности.
- •28. Теорема о пределе монотонной ограниченной последовательности. Теорема о пределе промежуточной функции
- •29. Свойства предела Предел функции
- •30. Первый замечательный предел
- •Первый замечательный предел
- •31. Второй замечательный предел
- •32. Неопределенности. Сравнение бесконечно малых. Таблица эквивалентных замен
- •3) Если данный предел: не существует, в этом случае мы ничего не можем сказать о сравниваемых функциях и поэтому говорят, что функции не сравнимы.
21. Матрица перехода от базиса к базису
Ма́трицей
перехо́да от базиса
к базису
является матрица,
столбцы которой — координаты
разложения векторов
в базисе
.
Обозначается
Пример поиска матрицы
Найдём матрицу
перехода от базиса
к
единичному базису
путём элементарных
преобразований
следовательно
22. Линейный оператор и его матрица
Пусть заданы линейные пространства X и Y. Правило, по которому каждому элементу x e X ставится в соответствие единственный элемент y e Y , называется оператором, действующим в линейных пространствах X , Y. Результат действия оператора A на элемент x обозначают y = A x или y = A(x). Если элементы x и y связаны соотношением y = A x, то y называют образом элемента x; элемент x прообразом элемента y.
Множество элементов линейного пространства X, для которых определено действие оператора A, называют областью определения оператора и обозначают D(A).
Множество элементов линейного пространства Y, которые являются образами элементов из области определения оператора A, называют образом оператора и обозначают Im(A). Если y = A x , то x e D(A), y e Im(A) .
Оператор A, действующий в линейных пространствах X , Y называется линейным оператором, если
A(u+v)=A(u)+A(v) и A(au)=aA(u) и для любых u,v e X и для любого числа a.
Если пространства X и Y совпадают, то говорят, что оператор действует в пространстве X. В дальнейшем ограничимся рассмотрением линейных операторов, действующих в линейном пространстве X.
Линейный оператор и его матрица. Переход к другому базису
Рассмотрим линейный оператор A, действующий в конечномерном линейном пространстве X, dim(x)=n и пусть e1, e2, ..., en - базис в X. Обозначим через A e1 = (a11,...,an1), ... , A en = (a1n,...,ann) образы базисных векторов e1, e2, ..., en .
Матрица
столбцами которой являются координаты образов базисных векторов, называется матрицей линейного оператора в заданном базисе.
Доказано,
что каждому линейному оператору,
действующему в n-мерном линейном
пространстве, отвечает единственная
квадратная матрица порядка n; и
обратно
каждая квадратная
матрица порядка n задает единственный
линейный оператор, действующий в этом
пространстве. При этом соотношения
с одной стороны, связывают координаты образа y = A x с координатами прообраза X, с другой стороны, описывают действие оператора, заданного матрицей A.
При изменении базиса линейного пространства матрица оператора, очевидно, изменяется. Пусть в пространстве X произошел переход от базиса e = {e1, ... , en} к базису e' = {e'1, ... , e'n} . Связь между матрицей Ae оператора A в базисе e и матрицей Ae' этого оператора в базисе e' задается формулой
Здесь
-
матрица перехода от базиса e к базису
e' и обратная к ней.
23. Собственные значения и собственные векторы линейных операторов
Определение:
Пусть L
– заданное n-
мерное линейное пространство. Ненулевой
вектор
L
называется собственным
вектором
линейного преобразования А, если
существует такое число ,
что выполняется равенство:
A
.
При
этом число
называется собственным
значением (характеристическим числом)
линейного преобразования А, соответствующего
вектору
.
Определение:
Если линейное преобразование А в
некотором базисе
,
,…,
имеет матрицу А =
,
то собственные значения линейного
преобразования А можно найти как корни
1,
2,
… ,n
уравнения:
Это уравнение называется характеристическим уравнением, а его левая часть- характеристическим многочленом линейного преобразования А.
Следует отметить, что характеристический многочлен линейного преобразования не зависит от выбора базиса.
Рассмотрим
частный
случай. Пусть
А – некоторое линейное преобразование
плоскости, матрица которого равна
.
Тогда преобразование А может быть задано
формулами:
;
в
некотором базисе
.
Если преобразование А имеет собственный вектор с собственным значением , то А .
или
Т.к. собственный вектор ненулевой, то х1 и х2 не равны нулю одновременно. Т.к. данная система однородна, то для того, чтобы она имела нетривиальное решение, определитель системы должен быть равен нулю. В противном случае по правилу Крамера система имеет единственное решение – нулевое, что невозможно.
Полученное уравнение является характеристическим уравнением линейного преобразования А.
Таким образом, можно найти собственный вектор (х1, х2) линейного преобразования А с собственным значением , где - корень характеристического уравнения, а х1 и х2 – корни системы уравнений при подстановке в нее значения .
Понятно, что если характеристическое уравнение не имеет действительных корней, то линейное преобразование А не имеет собственных векторов.
Следует отметить, что если - собственный вектор преобразования А, то и любой вектор ему коллинеарный – тоже собственный с тем же самым собственным значением .
Действительно,
.
Если учесть, что векторы имеют одно
начало, то эти векторы образуют так
называемое собственное
направление или
собственную
прямую.
Т.к. характеристическое уравнение может иметь два различных действительных корня 1 и 2, то в этом случае при подстановке их в систему уравнений получим бесконечное количество решений. (Т.к. уравнения линейно зависимы). Это множество решений определяет две собственные прямые.
Если
характеристическое уравнение имеет
два равных корня 1
= 2
= ,
то либо имеется лишь одна собственная
прямая, либо, если при подстановке в
систему она превращается в систему
вида:
.
Эта система удовлетворяет любым значениям
х1
и х2.
Тогда все векторы будут собственными,
и такое преобразование называется
преобразованием
подобия.