Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Алыпов 1-10.doc
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
1.07 Mб
Скачать

7.Классификация видов моделирования.

EMBED PBrush

Физическое моделирование - моделируемый объект или процесс воспроизводится исходя из соотношения подобия, вытекающего из схожести физических явлений. Используются физ модели, элементы к-ых подобны натуральным объектам исследования, но имеют иной масштаб (н-р, макет самолета). Физ модели могут иметь вид полномасштабных макетов (н-р, авиационные тренажеры). Физ модели конкретны, очень наглядны, часто их можно даже потрогать руками. Физ мод-ие прим-ся для мод-ия сложных объектов исслед-я, не имеющих точного матем-го описания. При физ модел-ии для иссл-я процесса порой используют процесс другой физич природы, к-ый описывается аналогичными матем-ми зависимостями.

Математическое моделирование – процесс установления соответствия реальной системе S мат модели M и исследование этой модели, позволяющее получить хар-ки реальной системы. Применение мат модел-ния позволяет иссл-ть объекты, реальные эксперименты над которыми затруднены или невозможны.

Аналит-е моделирование - процессы функц-ия элем-в записываются в виде мат-х соотношений (алгебр-х, интегральных, диффер-х, логич-х и т.д.). Мат. модель может вообще не содержать в явном виде искомых величин. Ее необходимо преобразовать в систему соотношений относ-но искомых величин, допускающую получение нужного результата чисто анал-ми методами. Под этим понимается получения явных формул вида <искомая величина> =<аналитическое выражение>, либо получение урав-й известного вида, решение которых также известно. В некоторых случаях возможно качественное исследование модели, при котором в явном виде можно найти лишь некоторые свойства решения.

Компьютерное моделирование – метод решения задач анализа или синтеза сложной системы на основе использования ее компьютерной модели.

Численное мод-е использует методы вычис-й матем-ки и позволяет получить лишь приближенные решения. Решение задачи бывает менее полным, чем в анал-м мод-и. Иногда оно сводится к небольшому числу частных случаев. Принципиальный недостаток численного мод-я закл-ся в том, что роль такого мощного инструмента исслед-я как компьютер сводится лишь к автом-й реализации выбранного численного метода. Моделирующий алгоритм в большей степени отражает именно численный метод, чем особенности модели. Поэтому при смене численного метода приходится заново перерабатывать алгоритм моделирования.

Имит-е мод-ие - воспроизведение на ЭВМ (имитация) процесса функц-я исследуемой системы с соблюдением логической и временной послед-ти реальных событий. Для имит- мод-я характерно воспроизведение событий, происходящих в системе (описываемых моделью) с сохр их логической структуры и временной последовательности. Оно позволяет узнать данные о состоянии системы или отдельных ее элементов в опред-е моменты времени. Имитационное моделирование аналогично экспериментальному исследованию процессов на реальном объекте.

8.Виды математического моделирования. Примеры

Математическое моделирование – процесс установления соответствия реальной системе S мат модели M и исследование этой модели, позволяющее получить хар-ки реальной системы. Применение мат модел-ния позволяет иссл-ть объекты, реальные эксперименты над которыми затруднены или невозможны.

EMBED PBrush

Аналит-е моделирование - процессы функц-ия элем-в записываются в виде мат-х соотношений (алгебр-х, интегральных, диффер-х, логич-х и т.д.). Мат. модель может вообще не содержать в явном виде искомых величин. Ее необходимо преобразовать в систему соотношений относ-но искомых величин, допускающую получение нужного результата чисто анал-ми методами. Под этим понимается получения явных формул вида

<искомая величина> =<аналитическое выражение>, либо получение урав-й известного вида, решение которых также известно. В некоторых случаях возможно качественное исследование модели, при котором в явном виде можно найти лишь некоторые свойства решения.

Численное мод-е использует методы вычис-й матем-ки и позволяет получить лишь приближенные решения. Решение задачи бывает менее полным, чем в анал-м мод-и. Принципиальный недостаток численного мод-я закл-ся в автом-й реализации выбранного численного метода. Моделирующий алгоритм в большей степени отражает именно численный метод, чем особенности модели. Поэтому при смене численного метода приходится заново перерабатывать алгоритм моделирования.

Имит-е мод-ие - воспроизведение на ЭВМ (имитация) процесса функц-я исследуемой системы с соблюдением логической и временной послед-ти реальных событий. Для имит- мод-я характерно воспроизведение событий, происходящих в системе (описываемых моделью) с сохр их логической структуры и временной последовательности. Оно позволяет узнать данные о состоянии системы или отдельных ее элементов в опред-е моменты времени. Имитационное моделирование аналогично экспериментальному исследованию процессов на реальном объекте, т.е. на натуре.

ПРИМЕРЫ:

Рассмотрим пример, характеризующий различие рассмотренных видов моделирования.

Имеется система, состоящая из трех блоков.

Система функционирует нормально, если исправен хотя бы один из блоков 1 и 2, а также исправен блок 3. Известны функции распределения времени безотказной работы блоков f1(t),f2(t),f3(t). Требуется найти вероятность безотказной работы системы в момент времени t.

Эквивалентная логическая схема

означает, что отказ системы наступает при обрыве цепи. Это имеет место в следующих случаях:

отказали блоки 1 и 2, исправен блок 3;

отказал блок 3, исправен хотя бы один из блоков 1 и 2.

Вероятность безотказной работы системы P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) =

Эта формула и есть основа математической модели системы.

Аналитическое моделирование. Оно возможно лишь при условии, что все интегралы выражаются через элементарные функции. Допустим, что

.

Тогда = = .

С учетом этого модель (1) принимает вид

.

Это и есть явное аналитическое выражение относительно искомой вероятности; оно справедливо лишь при сделанных допущениях.

Численное моделирование. Необходимость в нем может возникнуть, например, тогда, когда установлено, что интегралы не определяются (т.е. выражены не ч/з элементарные функции). Необходимость в нем может возникнуть, например, тогда, когда установлено, что распределения f1(t),f2(t),f3(t) подчиняются закону Гаусса (нормальному): .Для вычислений по формуле P(t)=P1,2(t)*p3(t)=(1-q1(t)*q2(t))*(1-q3(t)) = при каждом значении t они должны определяться численно, например, по методу трапеций, Симпсона, Гаусса или другими методами. Для каждого значения t вычисления проводятся заново.

метод прямоугольников, метод трапеций, метод параболы. При методе прямоуг возникает ошибка – неточность вычислений. Но можно разделить на 2 и более интервалов. Появляется множество интегралов, но здесь уже возникает ошибка округления.

метод Гаусса

метод Монте-Карло

Имитационное моделирование. Имитация есть воспроизведение событий, происходящих в системе, т.е. исправной работы либо отказа rаждого элемента. Если время работы системы t, а ti -  время безотказной работы элемента с номером i, то: событие ti>t означает исправную работу элемента за время (0; t];

событие ti<=t означает отказ элемента к моменту t.

Заметим, что ti - случайная величина, распределенная по закону fi(t), который известен по условию.

Моделирование случайного события «исправная работа k –го элемента за время (0; t]» заключается:

1)в получении случайного числа ti, распределенного по закону fi(t);

2)в проверке истинности логического выражения ti>t. Если оно истинно, то i-й элемент исправен, если ложно – он отказал.

Алгоритм моделирования таков:

1.Положить n=0, k=0. Здесь n –  счетчик числа реализаций (повторений) случайного процесса; k – счетчик числа «успехов».

2.Получить три случайных числа t1,t2,t3, распределенных соответственно по законам f1(t),f2(t),f3(t).

3.Проверить истинность логического выражения L=[(t1>t)∩ (t2>t)∩ (t3>t)] v [(t1>t)∩ (t2<=t)∩ (t3>t)] v [(t1<=t)∩ (t2>t)∩ (t3>t)]

Если L=true, то положить k=k+1 и перейти к шагу 4, иначе перейти к шагу 4.

4.Положить n=n+1.

5.Если n<=N, перейти к шагу 2; иначе вычислить и вывести P(t)=k/N. Здесь N - число реализация случайного процесса; от него зависят точность и достоверность результатов моделирования.

6.Стоп.

Еще раз подчеркнем: Значение N задают заранее по соображениям обеспечения заданной точности о достоверности статистической оценки искомой величины P(t).