Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы на экзамен по химии.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
965.38 Кб
Скачать

19 Вопрос. Гомогенные и гетерогенный катализ.

Гомогенный катализ

Катализаторы, которые находятся в системе в том же фазовом состоянии, что и реагенты, называются гомогенными. Механизм гомогенного катализа можно объяснить на основе теории промежуточных соединений. Большой вклад в развитие этой теории внесли П. Сабатье (Франция) и Н.Д. Зелинский (Россия). Согласно этой теории, катализатор образует с реагентами промежуточные соединения. Это приводит к уменьшению энергии активации реакции. Например, реакция:

АВ + D → A…B…D → A + BD

в присутствии катализатора К может проходить по схеме:

D + K   D…K   DK

DK + AB   A…B…D…K → A + BD + K

Катализатор, как видим, не входит в продукты и не изменяет своего состава.

Примером каталитической гомогенной реакции является процесс окисления оксида углерода в присутствии паров воды:

2СО + О2   2СО2.

Гетерогенный катализ

Если катализаторы и реагенты находятся в разных фазах и имеют границу раздела, то катализ называется гетерогенным. Катализатор является твердым веществом, а реагирующие вещества – газы или жидкости. Реагирующие молекулы адсорбируются на поверхности катализатора, и за счет ориентации определенным образом и ослабления внутримолекулярных связей снижается энергия активации и увеличивается скорость реакции.

Пусть в отсутствии катализатора протекает реакция

А + В = АВ* = Продукты,

а в присутствии катализатора скорость ее возрастает, но продукты остаются теми же. Если считать, что активное адсорбционное состояние аналогично активированному комплексу АВ некаталитической реакции, то весь процесс можно изобразить следующим образом.

1. Адсорбция исходных веществ на поверхность катализатора:

А + В + Кт = АВКт

Как правило, этот процесс экзотермический.

2. Перевод адсорбированного состояния в активное:

АВКт = АВКт*

Этот процесс требует затраты энергии, называемой истинной энергией активации.

3. Реакция в адсорбированном состоянии с образованием адсорбированных конечных продуктов:

АВКт* = Продукты Кт

4. Десорбция продуктов реакции, приводящая к регенерации катализатора:

Продукты Кт = Продукты + Кт

Таким образом, и в гетерогенном катализе ускоряющее действие катализатора, так же как и в гомогенном катализе, связано с тем, что реагирующие вещества образуют промежуточные соединения, что приводит к снижению энергии активации.

20 Вопрос. Обратимые реакции. Химическое равновесие. Константа химического равновесия.

НЕОБРАТИМЫЕ И ОБРАТИМЫЕ РЕАКЦИИ

Химические реакции заключаются во взаимодействии реагентов с образованием продуктов реакцию. Не следует, однако, полагать, что направление химической реакции только одно. В действительности, химические реакции протекают и в прямом, и в обратном направлениях:

Реагенты  Продукты

Все химические реакции, в принципе, обратимы.  Это означает, что в реакционной смеси протекает как взаимодействие реагентов, так и взаимодействие продуктов. В этом смысле различие между реагентами и продуктами условное. Направление протекания химической реакции определяется условиями ее проведения (температурой, давлением,концентрацией веществ). Многие реакции имеют одно преимущественное направление и для проведения таких реакций в противоположном направлении требуются экстремальные условия. В подобных реакциях происходит почти полное превращение реагентов в продукты Пример. Железо и сера при умеренном нагревании реагируют между собой с образованием сульфида железа (II), FeS при таких условиях устойчив и практически не разлагается на железо и серу:

Fe + S   FeS

Пример. Реакция синтеза аммиака является обратимой:

N2 + 3H2  2NH3

 При 200 атм и 400 0С достигается максимальное и равное 36% (по объему) содержание NH3 в реакционной смеси. При дальнейшем повышении температуры вследствие усиленного протекания обратной реакции объемная доля аммиака в смеси уменьшается. Прямая и обратная реакции протекают одновременно в противоположных направлениях.

Во всех обратимых реакциях скорость прямой реакции уменьшается, скорость обратной реакции возрастает до тех пор, пока обе скорости не станут равными и не установится состояние равновесия.

В состоянии равновесия скорости прямой и обратной реакции становятся равными.

Химическое равновесие в гомогенных системах

При равенстве энтальпийного и энтропийного факторов ΔН = ТΔS ΔG = 0, что является термодинамическим условием химического равновесия. Химическое равновесие имеет динамический характер. Скорость реакции (число частиц образующихся в единицу времени в единице объема) в прямом направлении равна скорости реакции в обратном направлении. В этот момент концентрации исходных веществ и продуктов реакции не изменяются во времени и называются равновесными концентрациями. Они обозначаются символом вещества в квадратных скобках.

Константа химического равновесия

При равновесии химической реакции:

bB + dD = lL + mM

или

,

где pp,LppMpp,DppB –равновесные парциальные давления веществ, а [L], [M],[D],[B] –равновесные концентрации веществ; lmdb - показатели степени, равные стехиометрическим коэффициентам.

Отношения произведений парциальных давлений или концентраций получили названия констант химического равновесия соответственно Кр или Кс:

Эти уравнения являются математическими выражениями закона действующих масс, открытого норвежскими учеными К. Гульдбергом и П. Вааге в 1867 г.:

отношение произведения равновесных концентраций продуктов реакции в степенях, равных стехиометрическим коэффициентам, к произведению равновесных концентраций исходных веществ в степенях, равных стехиометрическим коэффициентам, при Т = соnst, является величиной постоянной.

Например, для реакции синтеза аммиака:

N2 + 3H2 = 2NH3

закон действующих масс имеет вид:

Кс = [NH3]2 [N2][H2]3

Подставляя выражение константы в уравнения, получаем

ΔG0 = - RTlnKc = - 2,3RTlgKp,

ΔG0 = - RTlnKp = - 2,3RTlgKc.

Рассчитав величину ΔG0 химической реакции, можно определить константу химического равновесия. Используя закон действующих масс, можно рассчитать равновесные концентрации реагирующих веществ.