- •1 Вопрос классификация неорганических веществ
- •2 Вопрос Основные понятия химии
- •3 Вопрос Закон сохранения массы вещества. Закон постоянства состава. Закон Авогадро. Молярный объем. Число Авогрдо.
- •4 Вопрос Закон эквивалентов. Определение молярных массэквивалентов солей, оснований, кистот, элементов
- •6 Вопрос Основные сведения о строении атомов. Протон, нейтрон,электрон. Квантовые числа. Максимальное число электронов на энергетических уровнях и полдуровнях.
- •8 Вопрос Периодический закон Менделеева. Структура периодической системы.
- •9 Вопрос Определение свойств элементов по строению электронных оболочек атомов.
- •10 Вопрос Периодическое изменение свойств химических элементов (атомные радиусы, степень окисления, вост и окисл свойства эелементов и простых веществ, свойства оксидов и гидроксидов )
- •11 Вопрос. Энергия ионизации. Сродство электрону. Электроотрицательность.
- •12 Вопрос. Химическая связь. Металлическая связь. Ионная связь
- •13 Вопрос Ковалентная связь.
- •14 Вопрос Водородная связь. Донорно-акцепторная связь.
- •15 Вопрос Межмолекулярное взаимодействие.
- •16 Вопрос. Скорость хим. Реакций. Гомогенные и гетерогенные системы.
- •17 Вопрос. Зависимость скорости гомогенных реакций от концентрации реагирующих веществ. Закон действия масс.
- •18 Вопрос. Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса.
- •19 Вопрос. Гомогенные и гетерогенный катализ.
- •20 Вопрос. Обратимые реакции. Химическое равновесие. Константа химического равновесия.
- •21 Вопрос. Смещение химического равновесия. Принцип Ле Шателье.
- •22 Вопрос. Энергетика хим. Реакций. Внутренняя энергия. Энтальпия. Энтропия. Термохим уравнения. Закон Гесса. Следствие из закона Гесса.
- •1 Следствие
- •2 Следствие
- •Лавуазье-Лапласа: тепловой эффект образования химических соединений равен, но обратен по знаку тепловому эффекту его разложения.
- •Гесса: тепловой эффект реакции при постоянном давлении или объеме зависит только от начального и конечного состояния системы и не зависит от пути перехода.
- •23 Вопрос. Энергия Гиббса. Направленность хим. Процессов. Анализ уравнения Гиббса.
- •24 Вопрос. Растворы. Растворимость веществ. Энергетика растворения. Общие свойства растворов(осмос, понижение и повышение температуры замерзания и кипения растворов)
- •25 Вопрос. Состав растворов. Способы выражения состава раствор (безразмерные, концентрации)
- •30Вопрос . Ионные уравнения реакций
- •32 Вопрос.Диссоциация воды
- •33 Вопрос. Гидролиз солей – это взаимодействие ионов соли с водой с образованием малодиссоциирующих частиц.
- •Вопрос . Степень гидролиза
- •36Вопрос. Окисли́тельно-восстанови́тельные
- •41 Вопрос . Электрохимическая коррозия
- •1) Гомогенный механизм электрохимической коррозии:
- •2) Гетерогенный механизм электрохимической коррозии:
- •44 Вопрос . Вода в природе
- •46 Вопрос.
- •49 Вопрос .
- •50Вопрос .
- •51 Вопрос .
- •53. Неорганические вяжущие вещества
17 Вопрос. Зависимость скорости гомогенных реакций от концентрации реагирующих веществ. Закон действия масс.
Зависимость скорости реакции от концентрации веществ
Чтобы произошла реакция, необходимо столкновение реагирующих частиц. Число столкновений растет с увеличением числа реагирующих частиц в единице объема, т.е. с увеличением концентрации веществ. Это утверждение нашло отражение в законе действующих масс, который установили в 1867 г. норвежские химики К.Гульдберг и П. Вааге:
при постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам в уравнении реакции.
Для реакции
bB + dD = lL + mM
выражение кинетического уравнения скорости имеет вид
,
где k – константа скорости реакции, не зависит от концентрации веществ, но зависит от их природы и температуры; b и d –порядки реакции, установленные опытным путем (для простых реакций совпадают со стехиометрическими коэффициентами в уравнении), сА и сВ – концентрации реагентов.
Закон действующих масс справедлив лишь для наиболее простых по своему механизму реакций, протекающих в газах или растворах. Часто уравнение реакции не отражает ее механизма. Сложные реакции можно представить как совокупность простых процессов, протекающих последовательно или параллельно. Закон действующих масс справедлив для каждой отдельной стадии реакции, но не для всего взаимодействия в целом. Та стадия процесса, скорость которой минимальна, лимитирует (определяет) скорость реакции, в общем. Поэтому закон действующих масс для лимитирующей стадии процесса приложим и ко всей реакции в целом.
Действующих масс закон, один из основных законов физической химии; устанавливает зависимость скорости химической реакции от концентраций реагирующих веществ и соотношение между концентрациями (или активностями) продуктов реакции и исходных веществ в состоянии химического равновесия. Норвежские учёные К. Гульдберг и П. Вааге, сформулировавшие Д. м. з. в 1864—67, назвали "действующей массой" вещества его количество в единице объёма, т. е. концентрацию, отсюда — наименование закона.
Если в идеальной газовой смеси или идеальном жидком растворе происходит реакция:
аА + а'А' = bB + b'B' (1)
(А, А' и т.д. — вещества, а, а' и т.д. — стехиометрические коэффициенты), то, согласно Д. м. з., скорость реакции в прямом направлении:
r+ = k+ [A] a [A'] a' (2)
Здесь [А] — концентрация вещества А и т.д., k+ — константа скорости реакции (в прямом направлении),k+ зависит от температуры, а в случае жидкого раствора — также и от давления; последняя зависимость существенна лишь при высоких давлениях. Вид уравнения (2) определяется тем, что необходимым условием элементарного акта реакции является столкновение молекул исходных веществ, т. е. их встреча в некотором малом объёме (порядка размера молекул). Вероятность найти в данный момент в данном малом объёме молекулу А пропорциональна [А]; вероятность найти в нём одновременно а молекул А и а'молекул А' по теореме о вероятности сложного события пропорциональна [А] a [А'] a'. Число столкновений молекул исходных веществ в единичном объёме за единичное время пропорционально этой величине. Определённая доля этих столкновений приводит к реакции. Отсюда вытекает уравнение (2).Мономолекулярные реакции требуют особого рассмотрения.
Скорость реакции (1) в обратном направлении
r- = k- [B] b [B'] b'. (3)
Если реакция обратима, т. е. протекает одновременно в противоположных направлениях, то наблюдаемая скорость реакции r = r+ – r-. При r+ = r- осуществляется химическое равновесие. Тогда, согласно уравнениям (2) и (3),
где К = k+/k- — константа равновесия. Для газовых реакций обычно применяют равноценное уравнение
где PA — парциальное давление вещества А и т.д.
Уравнения (2) и (3) применимы к простой (одностадийной) реакции и к отдельным стадиям сложной реакции, но не к сложной реакции в целом. Уравнения (4) и (5), выражающие Д. м. з. для равновесия, справедливы и в случае сложной реакции.
Общим условием равновесия по отношению к реакции (1), приложимость которого не ограничена идеальными системами, является уравнение
в котором [А] — активность вещества А и т.д. Уравнение (6) выводится из принципов термодинамики. С помощью Д. м. з. для равновесия вычисляют максимально достижимые степени превращения при обратимых реакциях. В число последних входят важные промышленные процессы — синтез аммиака, окисление сернистого газа и многие другие. На основе Д. м. з. для скоростей реакций получают кинетические уравнения, применяемые при расчёте химической аппаратуры.
