
- •Системный анализ и др.
- •Методология научного поиска
- •Первые научные программы античности
- •Механика Ньютона
- •4. Ньютоновская методология исследований
- •3. Относительность промежутка времени:
- •12. Основные понятия и принципы электромагнитной концепции: материя, движение, 4-мерный континуум пространства-времени, принцип близкодействия, принцип относительности а.Эйнштейна.
- •13. Становление квантово-полевой картины мира. Формирование фундаментальной идеи квантования физических величин. Квантовая гипотеза м.Планка.
- •Формирование идеи квантования физических величин
- •14. Корпускулярно-волновой дуализм. Формула Луи де Бройля.
- •15.Принцип дополнительности н. Бора. Соотношения неопределенностей Гейзенберга. Принцип соответствия н. Бора.
- •16. Электронная теория строения атомов и периодическая система д.И.Менделеева. Квантовые числа: главное орбитальное, магнитное, спиновое. Принцип Паули.
- •17. Фундаментальные вопросы современного естествознание: симметрия и асимметрия.
- •18.Основные понятия и принципы квантово-полевой картины мира (кпкм). Четыре типа фундаментальных взаимодействий.
- •20.Элементарные частицы и их классификации. Фундаментальные частицы. Кварки.
- •23. Особенности биологического уровня организации материи. Биополимеры: белки, нуклеиновые кислоты, углеводы, липиды. Их строение и функции.
- •24. Взаимосвязь химии и биологии. Теории а.М. Бутлерова и а.П.Руденко
- •25. Фундаментальные вопросы современного естествознания: динамические и статистические закономерности
- •1. Звезды, их характеристики, источники энергии
- •2. Галактики и метагалактики
- •27. Строение и характеристика Солнечной системы
- •28. Космология. Космологические модели Вселенной.
- •32.Эволюционная теория ч.Дарвина. Гены и мутации. Современная синтетическая эволюционная теория.
- •36.Экология . Хозяйственная деятельность человека и экологии. Современные концепции экологии.
20.Элементарные частицы и их классификации. Фундаментальные частицы. Кварки.
Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части.
Следует иметь в виду, что некоторые элементарные частицы (электрон, фотон, кварки и т. д.) на данный момент считаются бесструктурными и рассматриваются как первичные фундаментальные частицы. Другие элементарные частицы (так называемые составные частицы — протон, нейтрон и т. д.) имеют сложную внутреннюю структуру, но, тем не менее, по современным представлениям, разделить их на части невозможно (см. Конфайнмент).
Строение и поведение элементарных частиц изучается физикой элементарных частиц.
Классификация
По величине спина
Все элементарные частицы делятся на два класса:
бозоны — частицы с целым спином (например, фотон, глюон, мезоны, бозон Хиггса).
фермионы — частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино);
По видам взаимодействий
Элементарные частицы делятся на следующие группы:
Составные частицы
адроны — частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:
мезоны — адроны с целым спином, то есть являющиеся бозонами;
барионы — адроны с полуцелым спином, то есть фермионы. К ним, в частности, относятся частицы, составляющие ядро атома, — протон и нейтрон.
Фундаментальные (бесструктурные) частицы
лептоны — фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино. Известны 6 типов лептонов.
кварки — дробнозаряженные частицы, входящие в состав адронов. В свободном состоянии не наблюдались (для объяснения отсутствия таких наблюдений предложен механизм конфайнмента). Как и лептоны, делятся на 6 типов и считаются бесструктурными, однако, в отличие от лептонов, участвуют в сильном взаимодействии.
калибровочные бозоны — частицы, посредством обмена которыми осуществляются взаимодействия:
фотон — частица, переносящая электромагнитное взаимодействие;
восемь глюонов — частиц, переносящих сильное взаимодействие;
три промежуточных векторных бозона W+, W− и Z0, переносящие слабое взаимодействие;
гравитон — гипотетическая частица, переносящая гравитационное взаимодействие. Существование гравитонов, хотя пока не доказано экспериментально в связи со слабостью гравитационного взаимодействия, считается вполне вероятным; однако гравитон не входит в Стандартную модель элементарных частиц.
Адроны и лептоны образуют вещество. Калибровочные бозоны — это кванты разных типов взаимодействий.
Кроме того, в Стандартной модели с необходимостью присутствует хиггсовский бозон, первые экспериментальные указания на существование которого появились в 2012 году.
Кварк — фундаментальная частица в Стандартной модели, обладающая электрическим зарядом, кратным e/3, и не наблюдающаяся в свободном состоянии. Кварки являются точечными частицами вплоть до масштаба примерно 0,5·10−19 м, что примерно в 20 тысяч раз меньше размера протона. Из кварков состоят адроны, в частности, протон и нейтрон. В настоящее время известно 6 разных «сортов» (чаще говорят — «ароматов») кварков, свойства которых даны в таблице. Кроме того, для калибровочного описания сильного взаимодействия постулируется, что кварки обладают и дополнительной внутренней характеристикой, называемой «цвет». Каждому кварку соответствует антикварк с противоположными квантовыми числами.
Гипотеза о том, что адроны построены из специфических субъединиц, была впервые выдвинута М. Гелл-Манном и, независимо от него, Дж. Цвейгом в 1964 году.
Слово «кварк» было заимствовано Гелл-Манном из романа Дж. Джойса «Поминки по Финнегану», где в одном из эпизодов звучит фраза «Three quarks for Muster Mark!» (обычно переводится как «Три кварка для Мастера/Мюстера Марка!»). Само слово «quark» в этой фразе предположительно является звукоподражанием крику морских птиц. Есть другая версия (выдвинутая Р. Якобсоном), согласно которой Джойс усвоил это слово из немецкого во время своего пребывания в Вене. В немецком слово Quark имеет два значения: 1) творог, 2) чепуха. В немецкий же данное слово попало из западнославянских языков (чеш. tvaroh, польск. twaróg — «творог»).[1]
Дж. Цвейг называл их тузами, но данное название не прижилось и забылось — возможно, потому, что тузов четыре, а кварков в первоначальной модели было три.
21. Атомное ядро. Изотопы. Ядерные силы. Ядерная энергия и способы ее высвобождения.
Атомное ядро — центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома. Атомные ядра изучает ядерная физика.
Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом.
Количество протонов в ядре называется его зарядовым числом Z — это число равно порядковому номеру элемента, к которому относится атом, в таблице Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом N . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов — называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом A(A=N+A), и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.
Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами
Изото́п (от др.-греч. ισος — «равный», «одинаковый», и τόπος — «место») — разновидность атома (и ядра) какого-либо химического элемента, отличающаяся от других изотопов только количеством нейтронов в ядре. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём), и почти не зависят от его массового числа A (то есть суммарного числа протонов Z и нейтронов N). Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов. Обычно изотоп обозначается символом химического элемента, к которому он относится, с добавлением верхнего левого индекса, означающего массовое число (например, 12C, 222Rn). Можно также написать название элемента с добавлением через дефис массового числа (например, углерод-12, радон-222). Некоторые изотопы имеют традиционные собственные названия (например, дейтерий, актинон).
Изотопы в природе
Считается, что изотопный состав элементов на Земле одинаков во всех материалах. Некоторые физические процессы в природе приводят к нарушению изотопного состава элементов (природное фракционирование изотопов, характерное для лёгких элементов, а также изотопные сдвиги при распаде природных долгоживущих изотопов). Постепенное накопление в минералах ядер — продуктов распада некоторых долгоживущих нуклидов используется в ядерной геохронологии.
Применение изотопов человеком
В технологической деятельности люди научились изменять изотопный состав элементов для получения каких-либо специфических свойств материалов. Например, 235U способен к цепной реакции деления тепловыми нейтронами и может использоваться в качестве топлива для ядерных реакторов или ядерного оружия. Однако в природном уране лишь 0,72 % этого нуклида, тогда как цепная реакция практически осуществима лишь при содержании 235U не менее 3 %. В связи с близостью физико-химических свойств изотопов тяжёлых элементов, процедура изотопного обогащения урана является крайне сложной технологической задачей, которая доступна лишь десятку государств в мире. Во многих отраслях науки и техники (например, в радиоиммунном анализе) используются изотопные метки.
Изотопы 60Co и 137Cs используются в стерилизации Υ-лучами (лучевая стерилизация) как один из методов физической стерилизации инструментов, перевязочного материала и прочего. Доза проникающей радиации должна быть весьма значительной — до 20-25 мкГр, что требует особых мер безопасности. В связи с этим лучевая стерилизация проводится в специальных помещениях и является заводским методом стерилизации (непосредственно в стационарах она не производится).
Ядерные силы силы — удерживающие нуклоны (протоны и нейтроны) в ядре. Они действуют только на расстояниях не более 10 -13 см и достигают величины, в 100-1000 раз превышающей силу взаимодействия электрических зарядов.
Ядерные силы не зависят от заряда нуклонов. Они обусловлены сильным взаимодействием.
Ядерная энергия (атомная энергия) — это энергия, содержащаяся в атомных ядрах и выделяемая при ядерных реакциях. Атомные электростанции, вырабатывающие эту энергию, производят 13–14% мирового электричества[1]; при этом не прекращаются дебаты об её использовании.
Применение ядерной энергии
Энергия деления ядер урана или плутония применяется в ядерном и термоядерном оружии (как пускатель термоядерной реакции). Существовали экспериментальные ядерные ракетные двигатели, но испытывались они исключительно на Земле и в контролируемых условиях, по причине опасности радиоактивного загрязнения в случае аварии.
На атомных электрических станциях ядерная энергия используется для получения тепла, используемого для выработки электроэнергии и отопления. Ядерные силовые установки решили проблему судов с неограниченным районом плавания (атомные ледоколы, атомные подводные лодки, атомные авианосцы). В условиях дефицита энергетических ресурсов ядерная энергетика считается наиболее перспективной в ближайшие десятилетия.
Энергия, выделяемая при радиоактивном распаде, используется в долгоживущих источниках тепла и бетагальванических элементах. Автоматические межпланетные станции типа «Пионер» и «Вояджер» используют радиоизотопные термоэлектрические генераторы. Изотопный источник тепла использовал советский Луноход-1.
Энергия термоядерного синтеза применяется в водородной бомбе
Высвобождение ядерной энергии
Известны экзотермические ядерные реакции, высвобождающие ядерную энергию.
Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.
Другим способом высвобождения ядерной энергии является термоядерный синтез. При этом два ядра лёгких элементов соединяются в одно тяжёлое. Такие процессы происходят на Солнце.
Многие атомные ядра являются неустойчивыми. С течением времени часть таких ядер самопроизвольно превращаются в другие ядра, высвобождая энергию. Такое явление называют радиоактивным распадом.
22.Химические процессы . реакционная способность вещества. Энергетика химической реакций. Катализаторы и автокаталитические системы.
Классификация химических процессов
До настоящего времени нет еще какой-либо вполне установившейся классификации процессов химической технологии. Практически целесообразно объединять их в зависимости от основных закономерностей, характеризующих протекание процессов, в следующие группы:
гидродинамические процессы;
тепловые процессы;
диффузионные процессы;
холодильные процессы;
механические процессы, связанные с обработкой твердых тел;
химические процессы, связанные с химическими превращениями обрабатываемых материалов.
Процессы подразделяются также на:
периодические,
непрерывные,
комбинированные.
Периодический процесс характеризуется единством места протекания отдельных его стадий и неустановившимся состоянием во времени. Периодические процессы осуществляют в аппаратах периодического действия, из которых конечный продукт выгружается полностью или частично через определенные промежутки времени. После разгрузки аппарата в него загружают новую порцию исходных материалов, и производственный цикл повторяется снова. Вследствие неустановившегося состояния при периодическом процессе в любой точке массы обрабатываемого материала или в любом сечении аппарата отдельные физические величины или параметры (например, температура, давление, концентрация, теплоемкость, скорость и Др.), характеризующие процесс и состояние веществ, подвергающихся обработке, меняются во время протекания процесса.
Непрерывный процесс характеризуется единством времени протекания всех его стадий, установившимся состоянием и непрерывным отбором конечного продукта. Непрерывные процессы осуществляют в аппаратах непрерывного действия. Вследствие установившегося состояния в любой точке массы обрабатываемого материала или в любом сечении непрерывно действующего аппарата физические величины или параметры в течение всего времени протекания процесса остаются практически неизменными.
Реакционная способность, характеристика химической активности веществ, учитывающая как разнообразие реакций, возможных для данного вещества, так и их скорость. Например,благородные металлы (Au, Pt) и инертные газы (Не, Ar, Kr, Xe) химически инертны, т. е. у них низкая Реакционная способность; щелочные металлы (Li, Na, К, Cs) и галогены (F, Cl, Вг, I) химически активны, т. е. обладают высокой Реакционная способность В органической химии насыщенные углеводороды характеризуются низкой Реакционная способность, для них возможны немногочисленные реакции (радикальное галогенирование и нитрование, дегидрирование, деструкция с разрывом С—С-связей и некоторые др.), происходящие в жёстких условиях (высокая температура, ультрафиолетовое облучение). Для галогенопроизводных насыщенных углеводородов уже возможны, кроме того, реакции дегидрогалогенирования, нуклеофильного замещения галогена, образования магнийорганических соединений и др., происходящие в мягких условиях. Наличие в молекуле двойных и тройных связей, функциональных групп (гидроксильной —ОН, карбоксильной —СООН, аминогруппы —NH2 и др.) приводит к дальнейшему увеличению Реакционная способность Количественно Реакционная способность выражают константами скоростей реакций (см. Кинетика химическая) или константами равновесия в случае обратимых процессов (см. Равновесие химическое). Современные представления о Реакционная способность основаны на электронной теории валентности (см. Валентность) и на рассмотрении распределения (и смещения под действием реагента) электронной плотности в молекуле. Электронные смещения качественно описываются в терминах индуктивных и мезомерных эффектов (см. Мезомерия), количественно — с применением квантовомеханических расчётов (см. Квантовая химия). Главный фактор, определяющий относительную Реакционная способность в ряду родственных соединений, — строение молекулы: характер заместителей, их электронное и пространственное влияние на реакционный центр (см. Пространственные затруднения), геометрия молекул (см. Конфигурация молекул, Конформация). Реакционная способность зависит и от условий реакции (природы среды, присутствия катализаторов или ингибиторов, давления, температуры, облучения и т.п.). Все эти факторы оказывают на скорость реакций различное, а иногда противоположное влияние в зависимости от механизма данной реакции. Количественная связь между константами скорости (или равновесия) в пределах одной реакционной серии может быть представлена корреляционными уравнениями, описывающими изменения констант в зависимости от изменения какого-либо параметра.
Химическая энергия известна каждому современному человеку и широко используется во всех сферах деятельности.
Она известна Человечеству с самых давних времен и всегда применялась как в быту, так и на производстве. Наиболее распространенными устройствами, использующими химическую энергию являются: камин, печь, горн, домна, факел, газовая горелка, пуля, снаряд, ракета, самолет, автомобиль. Химическая энергия применяется в производстве медикаментов, пластика, синтетических материалов, и т.п.
Наиболее применяемыми источниками химической энергии являются: нефтяные месторождения (нефть и ее производные), газоконденсатные месторождения (природный газ), угольные бассейны (каменный уголь), болота (торф), леса (древесина), а также поля (зеленые растения), луга (солома), моря (водоросли), и т.п.
Химические источники энергии являются «традиционными», однако их использование оказывает влияние на климат планеты. При нормальном функционировании экосистемы, солнечная световая энергия преобразуется в форму химической, и хранится в ней на протяжении продолжительного времени. Использование этих природных запасов, да и вообще нарушение энергетического баланса планеты приводит к непредсказуемым последствиям.
Человек не использует химическую энергию непосредственно (разве что к такому использованию можно отнести некоторые химические реакции).Обычно химическая энергия, выделившаяся в результате разрыва высокоэнергетических и образования низкоэнергетических химических связей, выделяется в окружающую среду в виде тепловой энергии. Химическую энергию можно назвать наиболее распространенной и широко используемой с древности и до наших дней. Любой процесс, связанный с горением, имеет в своей основе энергию химического взаимодействия органического (реже минерального) вещества и кислорода.
Современное промышленное высокотехнологичное «горение» осуществляется в двигателях внутреннего сгорания и газовых турбинах, в плазменных генераторах и топливных элементах. Однако такие устройства, как турбины и двигатели внутреннего сгорания между сырьем (химической энергией) и конечным продуктом (электрической энергией) имеют нехорошего посредника – тепловую энергию. К великому сожалению ученых и инженеров, к.п.д. тепловых машин довольно мал – не более 40%. Ограничения на дальнейший рост кпд наложены не материалами, а самой природой. 40% - это предельный кпд тепловой машины и дальше его увеличить невозможно.
КАТАЛИЗАТОРЫ, в-ва, изменяющие скорость хим. р-ции или вызывающие ее, но не входящие в состав продуктов. Различают катализаторы гомог. и гетерог. катализа. Типичные катализаторы для гомог. катализа - протонные и апротонные к-ты, основания, нек-рые комплексы металлов, для гетерогенного - металлы, оксиды металлов, сульфиды и др. Р-ции одного и того же типа могут протекать в условиях как гомогенного, так и гетерог. катализа. Так, для кислотно-основных р-ций типичные катализаторы - р-ры к-т и оснований или твердые тела с кислотными (Аl2О3, ТiO2, ТhO2, алюмосиликаты, цеолиты и др.) или основными [CaO, BaO, MgO, Ca(NH2)2 и др.] св-вами (см. Гетерогенный катализ, Гомогенный катализ, Кислотно-основной катализ). Для окислит.-восстановит. р-ций наиб. распространенными катализаторами являются переходные металлы (Pt, Pd, Ni, Fe, Co), оксиды (V2O5, MnO2, MoO3, Сr2О3), в т.ч. шпинели, сульфиды (MoS2, WS2, CoS), а также полупроводники, не имеющие в своем составе переходных элементов.
Требования, предъявляемые к катализаторам. Катализаторы, используемые в пром-сти, должны обладать постоянной высокой каталитич. активностью, селективностью, мех. прочностью, термостойкостью, устойчивостью к действию каталитич. ядов, большой длительностью работы, легкой регенерируемостью, определенными гидродинамич. характеристиками, незначительной стоимостью. Эти требования относятся, в первую очередь, к катализаторам для гетерог. катализа. Единой теории подбора катализаторов не существует. Многие катализаторы, широко применяемые в пром-сти, подобраны эмпирич. путем. Однако развитие представлений о механизме катализа позволяет сформулировать нек-рые принципы подбора катализаторов, пригодных для отдельных типов р-ций. Принимая за основу ту или иную теорию действия катализаторов, стремятся найти к.-л. независимую, хорошо изученную характеристику катализатора, к-рую можно связать с каталитич. активностью. Напр., установлены корреляции активности катализаторов с числом d-электронов на орбитали катиона (для простых оксидов), параметром кристаллич. решетки, электрич. проводимостью, зарядом и радиусом иона, энергией хим. связи, кислотностью и др. Основой этих корреляций, как правило, является положение элементов, входящих в катализаторы, в периодич. системе. В технол. расчетах каталитич. активность определяется скоростью р-ции, отнесенной к единице объема или массы катализатора (см. Активность катализатора), и зависит от его хим. состава. Поскольку формирование св-в катализатора происходит не только во время его приготовления, но и во время эксплуатации, метод приготовления катализатора должен учитывать возможность образования активных центров в условиях катализа. Кроме того, во мн. случаях активность пром. катализаторов увеличивают добавлением промоторов (сокатализаторов). В гетерог. катализе активность катализатора, как правило, пропорциональна его уд. пов-сти. Большой уд. пов-стью обладают пористые высокодисперсные катализаторы или катализаторы, полученные нанесением активных компонентов на пористые носители (см. Нанесенные катализаторы). С уменьшением размера частиц уд. пов-сть возрастает. Однако при малых частицах и малых диаметрах пор возможен переход р-ции из кинетич. области во внутреннедиффузионную, когда внутр. пов-сть зерна катализатора не полностью участвует в р-ции. Степень использования внутр. пов-сти катализатора можно повысить, применяя т. наз. бидиспeрсные структуры, состоящие, напр., из мелких плотных зерен малого радиуса (неск. десятков нм), соединенных в более крупные пористые частицы размером 103-104 нм. В случае нанесенных катализаторов дисперсность активного компонента, как правило, не влияет на скорость диффузии, т.к. структура пор создается носителем. Селективностью катализатора называют отношение скорости накопления целевого продукта к сумме скоростей всех превращ. исходного в-ва. Можно выделить неск. факторов, к-рые определяют селективность и связаны с составом гетерог. катализаторов. Т. наз. эффект ансамбля определяется числом атомов катализатора, с к-рыми взаимод. одна молекула реагента. При окислении углеводородов на оксидных катализаторах продукты парциального окисления (альдегиды, к-ты и т.д.) образуются при взаимод. молекулы с одним-двумя атомами кислорода пов-сти катализатора, а продукты глубокого окисления (СО2 и Н2О) -при взаимод. с неск. атомами кислорода. Поэтому разбавление в твердом р-ре активного оксида неактивным ведет к увеличению селективности катализатора в р-ции парциального окисления. Аналогичные эффекты ансамбля наблюдаются для р-ций олефинов при разбавлении каталитически активных металлов (Ni, Pt, Pd) в сплавах неактивными (Сu, Ag, Au); для гидрирования олефинов нужна одноточечная адсорбция, для их гидрогенолиза - многоточечная, поэтому при таком разбавлении возрастает селективность гидрирования. Селективность может также изменяться благодаря изменению электронных св-в и окружения активных центров катализатора (т. наз. эффект лиганда). Кроме того, в р-циях сложных орг. молекул большое значение имеет преимуществ. образование продукта, близкого по своей форме и размерам к размерам микропор катализатора. Напр., при алкилировании толуола метанолом на цеолитах наблюдается макс. селективность образования n-ксилола, т. к. поперечное сечение его молекулы меньше, чем у м- или о-ксилола, и он легко диффундирует по микропорам цеолита диаметром 0,6 нм. В сложных многостадийных р-циях применяют многофазные многокомпонентные катализаторы. Их селективность выше благодаря тому, что каждая стадия сложной р-ции ускоряется своим компонентом катализатора. Таковы, напр., Bi-Mo-Fe-Co-Ni-K-оксидные катализаторы окислит. аммонолиза пропилена. Селективность катализатора зависит также от его пористости, размера зерен и характера их укладки. Если целевой продукт является промежуточным в цепи последоват. р-ций, увеличение пористости снижает селективность катализатора относительно этого продукта. Применение высокопористых катализаторов в этом случае невыгодно. Так, при парциальном окислении С2Н4 до этиленоксида используемое в качестве катализатора серебро наносят на непористый носитель - корунд (a-Al2О3), чтобы предотвратить глубокое окисление продукта в мелких порах. Механич. прочность катализатора обеспечивает его длит. эксплуатацию. Прочность определяется кол-вом контактов между зернами катализатора и при увеличении пористости уменьшается. Поэтому в нек-рых случаях подбирают оптим. пористость катализатора для сохранения его прочности при необходимом значении внутр. пов-сти. В реакторах с неподвижным слоем катализаторы должны быть устойчивы к давлению лежащих выше слоев, мех. воздействиям при загрузке и выгрузке, изменению т-ры, эрозии потоком жидкости или газа, в реакторах с пссвдоожиженным слоем - к истиранию при ударах частиц друг о друга и о стенки реакторов. Повышение мех. прочности катализаторов достигается применением спец. методов приготовления - таблетированием при высоких давлениях, применением инертных связующих (SiO2, графит) и т.д. В псевдоожиженном и в движущемся слоях применяют зерна катализаторов сферич. формы с гладкой пов-стью. Термостойкость катализаторов особенно важна для первых по ходу реагента слоев катализаторов в экзотермич. р-циях, когда выделение тепла может вызвать рекристаллизацию и дезактивацию катализаторов. Для предотвращения рекристаллизации катализаторы наносят на термостойкие носители. В процессах с большим тепловым эффектом применяют теплопроводные носители для устранения местных перегревов. Напр., катализаторы глубокого окисления углеводородов наносят на нихромовую проволоку. В состав катализаторов включают также добавки, предотвращающие рекристаллизацию вследствие разъединения кристалликов катализаторов. Такова роль Al2О3 в составе железного катализатора синтеза NH3. Устойчивость катализатора к действию ядов каталитических определяется спецификой взаимод. последних с катализатором.
Следующий за реакционным циклом уровень организации представляет собой каталитический цикл, в котором некоторые - или все - интермедиаты сами являются катализаторами для одной из последующих реакций. Каждый из них (Ei+1) образуется из высокоэнергетического субстрата (S) при каталитической поддержке от предыдущего интермедиата (Ei) ( рис. 14,г ). Таким образом, каталитический цикл как целое эквивалентен автокатализатору. Если же такие автокаталитические (т.е. самовоспроизводящиеся) единицы оказываются, в свою очередь, сочленены между собой посредством циклической связи, то возникает каталитический гиперцикл. Гиперцикл, таким образом, основан на нелинейном автокатализе - автокатализе как минимум второго порядка, и представляет собой следующий, более высокий уровень в иерархии автокаталитических систем. Он состоит из самоинструктирующихся единиц (Ii) с двойными каталитическими функциями: в качестве автокатализатора интермедиат Ii способен инструктировать свое собственное воспроизведение, и при этом катализирует воспроизведение из высокоэнеогетического субстрата (S) следующего в цепи интермедиата (Ii+1)