Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teorii_proiskhozhdenia_nefti(1).docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
203.56 Кб
Скачать

  1. Теории происхождения нефти.

3Многочисленные теории о происхождении нефти и газа делятся на две основные категории - органического (биогенного) и неорганического (абиогенного) происхождения.

Одна из неорганических теорий происхождения нефти была предложена в 1877 г. Д.И. Менделеевым. Он выдвинул так называемую карбидную гипотезу. По его мнению, вода проникла в глубь земли по трещинам в осадочных и кристаллических породах до магмы, где реагировала с карбидами тяжелых металлов, образуя углеводороды:

СаС2 + 2Н2О → Са(ОН)2 + С2Н2

AlC3 + 12H2O → 4Al(OH)3 + 3CH4

Под действием высоких температур на больших глубинах углеводороды и вода испарялись, поднимались к наружным частям земли и конденсировались в хорошо проницаемых осадочных породах. Опыты, проведённые химиками, подтвердили такую возможность образования углеводородов.

В 1982 г. русский учёный Соколов В.Д. предложил так называемую “космическую” гипотезу, согласно которой углеводороды нефти образованы из углерода и водорода в эпоху формирования Земли и других планет. По мере охлаждения Земля углеводороды поглощались ею и конденсировались в земной коре. Одним из доводов этой гипотезы является обнаружение значительных количеств метана в атмосфере планет.

Глубинные массивные кристаллические периодитовые породы, как и метиориты, содержат элементарный углерод и карбиды тяжёлых металлов. Эти же породы содержат воду, водород, окись углерода и углекислоту. В этой связи в наше время выдвинут целый ряд других гипотез о неорганическом происхождении нефти и газа в недрах Земли в результате химических реакций непосредственно из углерода и водорода в условиях высоких температур, давлений и каталитического действия оксидов металлов (Fe, Ni и др.) (Н.А. Кудрявцев, В.Б. Порфильев и др.).

Химизм получения углеводородов из окиси углерода и водорода известен благодаря исследованиям учёных: Е.И. Орлова, Н.Д. Зелинского и других.

Процесс первого синтеза углеводородов из СО и Н2 был осуществлён русским химиком Е.И. Орловым в г. Харькове (1908 г.), получившим из смеси СО и Н2 простейший олефиновый углеводород - этилен, очевидно по схеме:

2СО + 4Н2 → С2Н4 + 2Н2О

Эта реакция была проведена при температуре 100 0С и при контакте с катализатором, состоящим из Ni + Pd, осаждённых на коксе.

Позднее было установлено, что в результате получается не только этилен, но и ряд других, более сложных алкенов.

Тяжёлые металлы подгруппы железа, особенно в присутствии окиси алюминия и магния, как под давлением, так и без давления способствует образованию углеводородов сложного состава и разных рядов:

В зависимости от условий реакции в качестве конечных продуктов могут быть не только жидкие углеводороды и вода, но также и твёрдые парафины и церезины, газы – метан и его ближайшие гомологи и углекислота.

Однако следует сказать, что неорганические гипотезы происхождения нефти находятся в противоречии и с геологическими данными и современными знаниями о составе нефтей.

Значительное большинство геологов и химиков являются сторонниками органического происхождения нефти и газа. Сторонники органической гипотезы (М.В. Ломоносов, В.И. Вернадский, И.М. Губкин, А.Ф. Добрянский и др.) считают, что источниками происхождения нефти были остатки растений и животных, скопившихся в течение многих миллионов лет на дне водоемов в прошлые геологические эпохи в виде ила. Отмершие организмы перекрывались в дальнейшем слоями осадочных пород и под влиянием анаэробных бактерий подвергались биохимическим превращениям. При этом, в основном, происходили сложные процессы гидролиза и восстановление липидов (жироподобные вещества), углеводов, белков и лигнина, содержащихся в организмах. Часть органического вещества в верхних слоях осадочных отложений превращалась бактериями в газы (CO2, N2, NН3, CН4 и др.) – стадия диагенеза. В нижних же слоях отложений на глубине 1-3 км в условиях высокого давления (10-30 Мпа) и повышенной температуры (120-1500) при каталитическом влиянии горных пород начиналась решающая фаза генезиса нефти: образование углеводородов из органического вещества и их превращения - стадия катагенеза.

Продукты превращения - нефть и газ первоначально рассеяны в нефтематеринской, чаще всего глинистой породе. В результате давления породы, диффузии, фильтрации по порам и трещинам под действием капиллярных сил нефть и газ способны перемещаться (мигрировать) в толще пород. В результате миграции нефть и газ скапливались в так называемых ловушках, т.е. в малопроницаемых горных породах. Такие скопления нефти называют нефтяными залежами. Если количество нефти и газа в залежи велико, или в данной структуре пластов горных пород имеется несколько залежей, то говорят о нефтяном, нефтегазовом или газовом месторождении.

Большая часть геологических и геохимических наблюдений и фактов лучше подтверждает гипотезу органического происхождения нефти. Особенно убедительно выглядит хорошо доказуемая связь между составом нефти, живого вещества и органического вещества древних осадочных пород и современных осадков.

  1. Элементарный состав нефтей и связь между элементарным составом и их физическими свойствами.

Для правильного выбора метода переработки нефти, составления материальных балансов некоторых процессов необходимо знать элементарный состав нефти и нефтепродуктов.

Основную часть нефти и нефтепродуктов составляют углерод (83-87%) и водород (12-14%). Их содержание, иногда и соотношение, полезно знать для расчетов некоторых процессов. Например, теплота сгорания котельных топлив является важным показателем, от которого зависит расход топлива. Теплота сгорания зависит от элементного состава топлив. Высокая теплота сгорания жидких топлив объясняется высоким содержанием в них водорода и углерода и малой зольностью. Входящие в состав топлива кислород, азот, влага и негорючие минеральные вещества являются балластом.

Процентное отношение массового содержания водорода к содержанию углерода (100Н\С) показывает сколько необходимо добавить водорода к сырью в процессе гидрокрекинга, чтобы получить желаемые продукты. Отношение 100 Н/С в бензине равно 17-18, в нефти 13-15, в тяжелых фракциях 9-12.

Данные элементного состава и структурно-группового состава узких фракций масел и тяжелых остатков, из которых выделение индивидуальных соединений невозможно, позволяет значительно расширить представления о структуре веществ, входящих в эти фракции, и построить модель их "средней" молекулы.

Элементный анализ на углерод и водород основан на безостаточном сжигании органической массы нефтепродукта в быстром токе кислорода до диоксида углерода и воды. Последние улавливают, и по их количеству рассчитывают содержание указанных элементов.

Во всех нефтях наряду с углеводородами имеется значительное количество соединений, включающих такие гетероатомы,как сера, азот и кислород. Содержание этих элементов зависит от возраста и происхождения нефти.

Сера может составлять от 0,2 до 7,0%, что отвечает содержанию сернистых соединений ~ 0,2-7,0%. Кислорода в нефти содержится от 0,05 до 3,6%, а содержание азота не превышает 1,7%.

Распределение гетероатомов по фракциям нефти неравномерно. Обычно большая их часть сосредоточена в тяжелых фракциях и особенно в смолистой ее части.

Кислородсодержащие соединения в отечественных нефтях редко составляют больше 10%. Эти компоненты нефти представлены кислотами, эфирами, фенолами и др. Содержание кислорода в нефтяных фракциях возрастает с повышением их температуры кипения, причем до 90-95% кислорода приходится на смолы и асфальтены.

Наиболее распространенными кислородсодержащими соединениями нефти являются кислоты и фенолы, которые обладают кислыми свойствами и могут быть выделены из нефти или ее фракций щелочью. Их суммарное количество обычно оценивают кислотным числом (количество мг КОН, пошедшего на титрование 1 г нефтепродукта). Содержание веществ с кислыми свойствами также, как и всех кислородсодержащих соединений, убывает с возрастом и глубиной нефтяных залежей.

Процентное содержание кислорода чаще всего определяют по разности между ста и суммарным содержанием всех остальных элементов в процентах. Это неточный метод, так как на его результатах сказываются погрешности определения всех остальных элементов.

Имеются прямые методы определения кислорода, например, гравиметрический метод пиролиза нефтепродуктов в токе инертного газа в присутствии платинированного графита и оксида меди. О содержании кислорода судят по массе выделившегося СО2.

Сера является наиболее распространенным гетероэлементом в нефтях и нефтепродуктах. Содержание ее в нефти колеблется от сотых долей процента до 14% (нефтепроявление Роузл Пойнт, США). В последнем случае почти все соединения нефти являются серосодержащими.

Как и кислородсодержащие соединения нефти, серосодержащие неравномерно распределены по ее фракциям. Обычно их содержание увеличивается с повышением температуры кипения. Однако в отличие от других гетероэлементов, содержащихся в основном в асфальто-смолистой части нефти, сера присутствует в значительных количествах в дистиллятных фракциях.

В нефтях сера встречается в виде растворенной элементарной серы, сероводорода, меркаптанов, сульфидов, дисульфидов и производных тиофена, а также в виде сложных соединений, содержащих одновременно атомы серы, кислорода и азота в различных сочетаниях.

Серосодержащие соединения наиболее вредны как при переработке, так и при использовании нефтепродуктов. Они отрицательно влияют на многие эксплуатационные свойства нефтепродуктов. У автомобильных бензинов снижается приемистость к ТЭС, стабильность, способность к нагарообразованию, коррозионную агрессивность. При сгорании сернистых соединений выделяются SO2 и SО3, образующие с водой коррозионно-агрессивные сернистую и серную кислоты. Серный ангидрид (SО3) сильнее, чем SО2 влияет на нагарообразование, износ и коррозию в двигателе, а также на качество масла, При наличии SО3 в продуктах сгорания повышается точка росы и тем самым облегчается конденсация Н2SO4 на стенках гильз цилиндров и усиливается коррозия. При воздействии на масло Н2SО4 образуются смолистые продукты, образующие затем нагар, обладающий в результате повышенного содержания серы большой плотностью и абразивностью и способствующий износу двигателя.

  1. Классификация газов.

Простейшая классификация для сжатых (да и не только) газов такова:

1. окислители

2. инертные

3. горючие

Окислители: сами по себе газы не горючие, но отлично поддерживают горение в качестве окислителя. Жир или смазка в комбинации с сильными окислителями представляют собой самовоспламеняющуюся (взрывоопасную) комбинацию.

Наиболее распространенные окислители:

1. Воздух

2. Двуокись азота NO2

3. Кислород

4. Окись азота NO

5. Фтор

6. Хлор

Нейтральные газы: не поддерживают горение и не горят. Кроме того, они не вступают в реакцию с обычными материалами. Если в помещение подать некоторый объем нейтрального газа, то таким образом, за счет вытеснения кислорода, можно серьезно ограничить процесс горения. Отличная замена воды в системах пожаротушения для применений, где использование воды недопустимо ( например, установки под напряжением и т.д.).

Наиболее распространенные нейтральные ("инертные") газы :

1. Азот

2. Аргон

3. Гелий

4. Ксенон

5. Неон

6. Углекислый газ (CO2) - (не путать с СО = угараный газ)

Горючие газы: в смеси с воздухом или кислородом возгораются или взрываются при соответствующей концентрации смеси . Если смесь слишком богатая или бедная, то воспламенения не произойдет.

Наиболее распространенные горючие газы:

1. Аммиак

2. Арсин

3. Ацетилен

4. Бутан

5. Водород

6. Угарный газ (Моноксид углерода)

7. Метан

8. Пропан

9. Пропилен

10. Силан

11. Холодильный агент R160, хлористый этил, C2H6Cl

12. Холодильный агент R600a, изобутан, CH(CH3)3);

13. Холодильный агент R40, хлористый метил, CH3Cl

14. Циклопропан (наркоз)

15. Этан

16. Этилен

  1. Фракционный состав нефти.

Для оценки качества добываемой нефти и выбора методов её дальнейшей переработки большое значение имеет распределение содержащихся в ней углеводородов по температурам кипения. Лабораторные исследования химического состава нефтей начинают с фракционной перегонки: отбирают узкие фракции, выкипающие в пределах двух-трёх, а иногда и одного градуса. В этих фракциях определяют содержание отдельных групп или индивидуальных углеводородов.

При лабораторном техническом контроле от начала кипения до 300 0С отбирают 10-градусные, а затем 50-градусные фракции.

На промышленных перегонных установках выделяют фракции, выкипающие в более широких температурных интервалах. Такие фракции обычно называют дистиллятами. Перегонку на таких установках вначале проводят при атмосферном давлении, отбирая следующие дистилляты:

- бензиновый (н.к. ÷ 170-200 0С);

- лигроиновый (160 ÷ 200 0С);

- керосиновый (180 ÷ 270-300 0С);

- газойлевый (270 ÷ 350 0С).

Промежуточные:

- керосино - газойлевый (270 ÷ 300 0С);

- газойле - соляровый (300 ÷ 350 0С);

- кубовый остаток - мазут.

Из фракций, выкипающих до 350 0С, смешением (компаундированием) составляют так называемые светлые нефтепродукты:

бензины авиационные и автомобильные; бензины и лигроины - растворители; керосины - реактивное и тракторное топливо; осветительный керосин; газойли - дизельное топливо.

Кубовый остаток (более 350 0С) - мазут, перегоняют в вакууме для предотвращения разложения компонентов, входящих в его состав, получая масляные дистилляты: соляровый, трансформаторный, веретённый, автоловый, цилиндровый и кубовый остаток - гудрон (или полугудрон). Масляные дистилляты идут на приготовление смазочных масел и пластичных смазок.

Из гудрона (полугудрона) получают наиболее вязкие смазочные масла и битум.

В зависимости от месторождения нефти имеют отличие по фракционному составу, выражающееся в различном выходе бензиновых, керосиновых и других фракций.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]