
- •2.Случайные события. И операции над ними.
- •3.Вероятность в случае дискретного пэи. Классическое определение вероятности.
- •4. Свойства вероятности
- •5. Некоторые понятия комбинаторики
- •6. Геометрические вероятности.
- •7. Аксиоматическое определение вероятности случайных событий.
- •8. Условная вероятность. Независимость событий. Формулы сложения и умножения.
- •9. Формула полной вероятности. Формула Байеса.
- •10.Схема Бернулли. Теорема Бернулли.
- •11. Предельные теоремы в схеме Бернулли. Теорема Пуассона. Локальная теорема Муавра - Лапласа.
- •13. Определение случайной величины. Дискретная с.В. Ряд распределения.
- •14. Функция распределения. Св и её свойства.
- •15. Непрерывная с.В. Плотность распределения и ее свойства.
- •16.Математическое ожидание дискретной и непрерывной с.В. (мо). Мода. Медиана.
- •17.Начальные и центральные моменты порядка к.
- •18.Дисперсия и ее свойства. Асимметрия и эксцесс.
- •19. Биноминальный закон распределение.
- •20.Распределение Пуассона.
- •22. Гипергеометрическое распределение
- •23. 6.2 Равномерное распределение
- •24. Показательное (экспоненциальное распределение)
- •25. Нормальный закон распределения (закон Гаусса)
- •25. Нормальный закон распределения (закон Гауса)
- •35.Эмпирическая функция распределения, гистограмма и их свойства.
- •36.Эмпирические моменты и их свойства.
- •37.Параметрические семейства распределений. Точечные оценки. Несмещенные и состоятельные оценки.
- •38. Метод моментов
- •39. Метод максимального правдоподобия.
- •Условный метод максимального правдоподобия
- •41. Неравенство Крамера — Рао
- •42. Интервальные оценки. Доверительный интервал. Общие принципы построения доверительных интервалов.
- •43. Статистическая проверка гипотез. Критерии. Ошибки I-ого рода.
- •44. Способы сравнения критериев. Наиболее мощные критерии. Лемма Неймана-Пирсона.
- •Способы сравнения критериев
16.Математическое ожидание дискретной и непрерывной с.В. (мо). Мода. Медиана.
Математическое ожидание непрерывной случайной величины вычисляется по формуле:
В частности, если с.в. задана своей плотностью вероятности на каком-либо отрезке, то и интеграл вычисляем на этом отрезке.
Математическое ожидание случайной величины.
Математическим ожиданием случайной величины х (M[x])называется средне
взвешенно значение случайной величины причем в качестве весов выступают
вероятности появления тех или иных значений.
Для дискретной случайной величины
Для непрерывной
С механической точки зрения мат. Ожидание это абсцисса центра тяжести системы
точек расположенных по одноименной оси. Размерность мат. Ожидания совпадает с
размерностью самой случайной величины.
Математическое ожидание случайной величины всегда больше наименьшего значения
и меньше наибольшего.
Модой (Мо) случайной величины х называется наиболее вероятное ее
значение. Это определение строго относится к дискретным случайным величинам.
Для непрерывной величины модой называется такое ее значение для которого
ф-ция плотности распределения имеет максимальную величину.
Медианой (Ме) случайной величины называется такое ее значение для
которого окажется ли случайная величина меньше этого значения.
Для непрерывной случайной величины медиана это абсцисса точки в которой
площадь под кривой распределяется пополам.
Для дискретной случайной величины значение медианы зависит от того четное или
нечетное значение случайной величины
n=2k+1, то Ме=хк+1 (среднее по порядку значение)
Если
значение случайных величин четное, т.е
n=2k, то
17.Начальные и центральные моменты порядка к.
Начальным моментом К-го порядка случайных величин называется математическое ожидания К-го порядка этой случайной величины.
Центрирование случайных величин называется отклонение случайных величин минус математическое ожидание
Центральный
момент К-го порядка случайных величин
называется ожидание К-ой степени
соответственно центрирование случайных
величин
18.Дисперсия и ее свойства. Асимметрия и эксцесс.
Дисперсия дискретной случайной величины есть математическое ожидание квадрата отклонения случайной величины от её математического ожидания: D(X) = (x1 - M(X))2p1 + (x2 - M(X))2p2 + ... + (xn- M(X))2pn = x21p1 + x22p2 + ... + x2npn - [M(X)]2
Свойства дисперсии. 1) Дисперсия постоянной величины равна нулю: D(С) = 0 2) Постоянный множитель можно выносить за знак дисперсии, предварительно возведя его в квадрат: D(СХ) = С2 · D(Х) 3) Дисперсия суммы (разности) независимых случайных величин равна сумме дисперсий слагаемых: D(Х1 ± Х2 ± ... ± Хn) = D(Х1) + D(Х2) + ... + D(Хn)
Асимметрия (коэффициент асимметрии) случайной величины (и дискретной, и непрерывной) As(X) - величина, характеризующая степень асимметрии распределения относительно математического ожидания. Коэффициент асимметрии дискретной случайной величины вычисляется по формуле: As(X) = [(x1-M(X))3p1 + (x2-M(X))3p2 + ... + (xn-M(X))3pn]/σ3 Если коэффициент асимметрии отрицателен, то либо большая часть значений случайной величины, либо мода находятся левее математического ожидания, и наоборот, если As(X)>0, то правее.
Эксцесс (коэффициент эксцесса) случайной величины (и дискретной, и непрерывной) Ex(X) - величина, характеризующая степень островершинности или плосковершинности распределения, т.е. степень так называемого «выпада». Коэффициент эксцесса дискретной случайной величины вычисляется по формуле: Ex(X) = [(x1-M(X))4p1 + (x2-M(X))4p2 + ... + (xn-M(X))4pn]/σ4 – 3