
- •1. Понятие о статистике и статистическом исследовании. Предмет статистики
- •2. Статистические методы изучения экономических явлений и процессов
- •3. Понятие статистической совокупности: признаки, показатели, вариация
- •4. Статистическое наблюдение: организация, виды и формы
- •5. Отчетность организаций и предприятий и специальные формы наблюдения
- •6. Система показателей как основа для статистического наблюдения и анализа
- •7. Программа статистического наблюдения, признаки, регистрация и обработка данных
- •8. Точность и достоверность статистического наблюдения. Ошибки наблюдения
- •9. Выборочное наблюдение, его задачи и организация
- •10. Статистические группировки. Задачи, решаемые группировками
- •11. Группировочные признаки, системы группировок
- •12. Типологические и структурные группировки
- •13. Понятие о вариационных рядах, элементы вариационного ряда, графические изображение ряда
- •14. Статистические таблицы, их построение и виды
- •15. Аналитические группировки и выявление взаимосвязей показателей
- •16. Абсолютные величины, их виды и способы измерения
- •17. Отностительные величины, их виды, способы расчета, применение в анализе
- •18. Статистическая сводка и группировка. Представление статистической информации
- •19. Средние величины в статистике, сущность и условия их определения
- •20. Виды средних величин и способы расчета
- •21. Относительные величины динамики, темпы роста и прироста
- •22. Построение аналитической группировки по количественному признаку. Таблица интервального ряда распределения
- •23. Построение комбинационной группировочной таблицы по результирующему и двум факторным признакам
- •24. Способы расчета среднего темпа роста для монотонного ряда динамики
- •25. Средние арифметические взвешенные, их построение и свойства
- •26. Общая характеристика показателей вариации и их назначение
- •27. Система показателей вариации и их расчеты
- •28. Дисперсия как общая мера вариации. Правило сложения дисперсий
- •29. Структурные средние: мода, медиана, квартиль, дециль. Смысл и применение для анализа распределений
- •30. Теоретические и эмпирические распределения как модели рядов распределения
- •31. Решение основных задач выборочного наблюдеиня. Ошибка выборки и доверительный интервал
- •32. Ряды динамики и их аналитические характеристики
- •33. Сглаживанеи рядов динамики. Уравнение тренда
- •34. Элементы статистического прогнозировнаия
- •35. Функциональные и статистические связи
- •36. Формы, виды и теснота связей, линейный коэффициент корреляции
- •37. Уравнение парной линейной корреляции
- •38. Понятие множественной корреляции
- •39. Понятие индексов. Индивидуальные и агрегатные индексы
- •40. Индексы основных экономических показателей
- •41. Средние индексы: построение и применение
- •42. Основные элементы и правила построения агрегатных индесков
- •43. Индексы переменного состава, постоянного состава и структурных сдвигов
- •44. Применение индексов в экономическом анализе
- •45. Сущность выборочного наблюдения
- •46. Определение доверительного интервала для среднего значения показателя
- •47. Определение доверительного интервала для доли
- •48. Проверка статистических гипотез
- •49. Показатели тесноты связи между качественными признаками
- •50. Прогнозирование ряда динамики с учетом сезонного фактора
37. Уравнение парной линейной корреляции
Простейшей системой корреляционной связи является линейная связь между двумя признаками - парная линейная корреляция.
Практическое значение ее в том, что есть системы, в которых среди всех факторов, влияющих на результативный признак, выделяется один важнейший фактор, который в основном определяет вариацию результативного признака. Измерение парных корреляций составляет необходимый этап в изучении сложных, многофакторных связей. Есть такие системы связей, при изучении которых следует предпочесть парную корреляцию. Внимание к линейным связям объясняется ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связей для выполнения расчетов преобразуются в линейную форму.
Уравнение парной линейной корреляционной связи называется уравнением парной регрессии и имеет вид:
у = а + bх,
где у - среднее значение результативного признака при определенном значении факторного признака х;
а - свободный член уравнения;
b - коэффициент регрессии, измеряющий среднее отношение отклонения результативного признака от его средней величины к отклонению факторного признака от его средней величины на одну единицу его измерения - вариация у, приходящаяся на единицу вариации х.
38. Понятие множественной корреляции
В большинстве экономических явлений зависимости результативного показателя от факторов множественные. Если предположить линейную форму связи и Z факторных признаков, то уравнение множественной линии регрессии можно записать y=a+bx+cz
В уравнении множественной связи включаются те факторы, которые по содержательному смыслу влияют на результативный признак. Ясно, что влияние каждого из факторов различно, поэтому уравнение множественной связи в конечном итоге можно количественно установить какой из факторов влияет на результат сильнее и в какой мере тесной является связь результативного фактора(у) со всеми включаемыми факторами.
39. Понятие индексов. Индивидуальные и агрегатные индексы
Индексы относятся к важнейшим обобщающим показателям экономико-статистического исследования.
Индекс – это относительный показатель сравнения 2х составляющих простого и сложного явления, состоящего из соизмеренных и несоизмеренных элементов.
Индивидуальный индекс – i – характеризует динамику уравнения изучаемого явления во времени за 2 сравниваемых периода или отражает соотношение элементов совокупности. Индексируемая величина – признак, изменение которого характеризует индекс.
Индекс цен: ip=P1/P0
Индекс физического объема: iq=q1/q0
Индекс стоимости продукции ipq=p1*q1/p0*q0
Агрегатный индекс – сложный относительный показатель, который характеризует среднее изменение социально – экономического явления, состоящего из несоизмеримых элементов. Числитель и знаменатель агрегатного индекса представляют собой сумму произведений двух величин, одна из которых меняется (индексируемая величина), а другая остается неизменной в числителе и знаменателе (вес) индекса. Индексируемой величиной называется признак, изменение которого изучается. Вес индекса – это величина, служащая для целей сравнения индексируемых величин.