
- •Общие принципы научного познания
- •Формы научного познания
- •Методы научного исследования
- •Особая роль математики в естествознании
- •Понятие научной картины мира
- •Тенденции развития естествознания
- •Проблема классификации наук
- •Античная наука
- •Александрийский период развития науки
- •Революция в астрономии
- •Развитие естествознания в хviii в.
- •Описание микрообъектов в квантовой механике
- •Развитие концепций электромагнитного поля
- •Свойства живых систем
- •Уровни организации живой природы
- •Молекулярный уровень
- •Клеточный уровень
- •Органно-тканевый уровень
- •Организменный уровень
- •Популяционно-видовой уровень
- •Биогеоценотический и биосферный уровни
- •Клеточная теория
- •Генетика
- •Законы Менделя
- •Хромосомная теория наследственности
- •Изменчивость
- •Генная инженерия и биоэтика
- •Закон постоянства состава
- •Гипотеза Авогадро
- •Атомно-молекулярное учение
- •Закон сохранения массы и энергии
- •Периодический закон Менделеева
- •Теория химического строения Бутлерова
Тенденции развития естествознания
С точки зрения истории науки человечество в своем познании прошло несколько стадий, представляющих различные тенденции развития науки вообще и естествознания – в частности. На первой из этих стадий сформировались общие представления об окружающем нас мире как о чем целом, едином, выразившиеся в натурфилософии. С XV–XVI вв. последовала аналитическая стадия познания природы, характеризуемая расчленением единой науки древности, приведшим к появлению отдельных самостоятельных естественных наук: астрономии, физики, химии, биологии а также целого ряда других, более частных естественных наук. Переход науки к аналитической стадии был связан с разработкой экспериментального метода исследования природы, введенного в науку Галилео Галилеем (1564–1642). Занявшись изучением свободно падающих тел, Галилей сформулировал управляющие ими законы, и заложил основы механики, которую превратил в научную дисциплину знаменитый английский ученый И. Ньютон (1643–1727). Вслед за этим постепенно формируются физика, химия, биология и другие фундаментальные науки о природе.
Дифференциация знания, осуществляемая по принципу ”одна наука – один предмет”, определяла главную тенденцию в развитии науки XIX в. Дифференциация научного знания служит необходимым этапом в развитии науки и направлена на более тщательное и глубокое изучение отдельных явлений и процессов определенной области действительности. Узко дисциплинарный подход, однако, таит опасность превращения науки в совокупность узких обособленных областей исследования, а ученых – в узких специалистов, перестающих видеть место своих работ в общей картине целостного объективного мира.
К счастью, сама наука выработала средства и методы для преодоления ограниченности дисциплинарного подхода к изучению мира.
В XX в. появилась тенденция к объединению методов исследования различных наук, – интеграции знания.
Интеграционные процессы в современном естествознании характеризуются образованием комплексов взаимодействующих наук на основе изучения единого объекта с привлечением методов исследования многих наук, созданием общенаучных теорий (теория электромагнетизма, квантовая механика, теория строения атома), выработкой общенаучных понятий (энтропия, симметрия, информация, система и т.д.).
Интеграция знания способствовала образованию междисциплинарных наук – новых наук, находящихся на стыке нескольких традиционных наук, возникающих в результате объединения их методов исследования в рамках новой самостоятельной научной дисциплины. Так возникли биофизика, биохимия, астрофизика, геофизика, геохимия и т.д. (рис.1.1).
Рис.1.1. Схема взаимосвязи основных естественных наук.
Интегрирующую, синтезирующую функцию выполняют такие общие науки, как термодинамика, кибернетика и синергетика, изучающие определенные аспекты многих форм движения (процессы управления, самоорганизации систем и др.), или предельно общие науки, объединяющие фактически все другие отрасли знания, – математика и философия. Синтезирующую роль играют и проблемные науки (типа онкологии), решающие комплексные проблемы с использованием данных и методов целого ряда других наук. В последнее время тенденция к интеграции наук становится ведущей, доминирующей.
Особое значение в наше время приобретает системный метод, который дает возможность рассматривать предметы и явления в их взаимосвязи и целостности. Именно поэтому системный метод, является наиболее эффективным средством интегративных исследований.
Усиливается связь, как отдельных наук, так и науки в целом с материальным производством, духовной культурой, со всеми сторонами жизни общества. Более того, возникли комплексные отрасли научно-технической деятельности, в которых наука, производство слиты нераздельно. Такова системотехника, биотехнология и т.п.