
- •Числа, множества и операции над ними.
- •Функция. Основные определения и понятия .Способы её задания.
- •3.Взаимообратные и сложные функции. Сложная функция.
- •Обратная функция.
- •4.Классы элементарных функций. Основные элементарные функции.
- •5.Бесконечно малые и бесконечно большие величины и функции.
- •6. Свойства бесконечно малых величин
- •7. Свойства б.Б.В.
- •3. Произведение бесконечно большых величин есть величина бесконечно большая.
- •8. Сравнение бесконечно малых функций. Эквивалентные бесконечно малые функции.
- •Определения
- •Эквивалентные величины
- •9. Бесконечные числовые последовательности. Предел последовательности.
- •Предел последовательности
- •10. Предел функции.
- •11. Теоремы о пределах.
- •12. Односторонние пределы.
- •13. Предел функции в бесконечности
- •14. Свойства непрерывных функций
- •15. Предел рациональной и дробно - рациональной функций.
- •16. Первый и второй замечательные пределы
- •17. Непрерывность функции в точке, на интервале и на отрезке.
- •18. Разрывы функций первого и второго рода. Устранимые разрывы.
- •19. Задача о мгновенной скорости движения. Механический смысл производной.
- •Механический смысл первой производной.
- •Механический смысл второй производной.
- •20. Математическое определение и геометрический смысл производной.
- •Составим отношение
- •Геометрический смысл производной
- •21. Непрерывность и дифференцируемость функций
- •22. Основные Правила дифференцирования
- •23. Производная обратной и сложной функций.
- •Доказательство. Итак
- •30. Дифференцирование неявных функций
- •31.Дифференцирование функций заданных параметрически и в полярной
- •32.Понятие о дифференциале функции и его геометрический смысл.
- •33. Производные высших порядков.
- •34.Дифференциалы высших порядков. Формула Лейбница .
- •Формула Лейбница
- •35. Теоремы Ферма, Ролля, Лагранжа и Коши. Их геометрический смысл.
- •38.Возрастание и убывание функций. Понятие об экстремуме.
- •39.Признак возрастания и убывания функции.
- •Доказательство. 1-я часть. Пусть f(X) на [a,b]. Придадим X приращение X и рассмотрим
- •40.Необходимое и достаточное условие существования экстремума.
- •41.Схема исследования функции на экстремум.
- •42. Исследование функции на экстремум с помощью второй производной.
- •Наибольшее и наименьшее значения функции на отрезке.
- •43.Формулы Тейлора и Маклорена Формула Тейлора
- •45.Исследование функций на экстремум с помощью формулы Тейлора
- •46.Выпуклость и вогнутость графика функции. Точки перегиба. Необходимое и
- •47.Асимптоты функции.
- •Горизонтальные асимптоты.
- •48.Исследование кривых, заданных параметрически (астроида, циклоида)
- •Пусть , исследуем аналогично .
- •Исследование функций, заданных в полярных координатах , можно исследовать как и параметрические, если перевести в декартовую систему координат.
- •49.0Бший план исследования функции и построения ее графика.
- •50.Касательная и нормаль к плоской кривой.
- •51.Приближенное решение уравнений. Метод Ньютона (касательных) Действительные корни .
- •52.Приближенное решение уравнений. Методы хорд, итераций и
- •54. Векторная функция скалярного аргумента и ее дифференцирование.
- •55.Свойства производной от векторной функции по скалярному аргументу.
- •56,Кривизна пространственной кривой. Сопровождающий трехгранник
- •57.Уравнения касательной, нормали, бинормали и плоскостей
- •51.Приближенное решение уравнений. Метод Ньютона (касательных) Действительные корни .
- •52.Приближенное решение уравнений. Методы хорд, итераций и
- •60.61.Интерполяция. Интерполяционный многочлен Лагранжа. Конечные разности и интерполяционная формула Ньютона
- •Интерполирующая функция Лагранжа.
56,Кривизна пространственной кривой. Сопровождающий трехгранник
Согласно
следствию 2, для
можно записать формулу:
Изменение
направления
,
связанное с изменением касательной к
пространственной кривой, характеризует
кривизну кривой. За меру кривизны
пространственной кривой, как и для
плоской, принимают предел отношения
угла смежности к длине дуги, когда
кривизна,
угол
смежности,
длина
дуги.
Вектор
вектор
кривизны пространственной кривой. Его
направление, перпендикулярное к
направлению касательной, является
направлением нормали пространственной
кривой. Но пространственная кривая
имеет в любой точке бесчисленное
множество нормалей, которые все лежат
в плоскости, проходящей через данную
точку кривой и перпендикулярно к
касательной в данной точке. Эту плоскость
называют нормальной плоскостью
пространственной кривой.
Определение.
Нормаль кривой, по которой направлен
вектор кривизны кривой в данной точке
– главная нормаль пространственной
кривой. Т.о.
единичный
вектор главной нормали.
Построим
теперь третий единичный вектор
равный векторному произведению
и
Вектор
,
как и
также перпендикулярен
т.е. лежит в нормальной плоскости. Его
направление называют направлением
бинормали пространственной кривой в
данной точке. Вектора
и
составляют тройку взаимно перпендикулярных
единичных векторов, направление которых
зависит от положения точки на
пространственной кривой и изменяется
от точки к точке. Эти вектора образуют
сопровождающий
трехгранник
(трехгранник Френе) пространственной
кривой. Вектора
и
образуют правую тройку, так же как и
единичные орты
в правой системе координат.
Взятые
попарно
определяют три плоскости, проходящие
через одну и ту же точку на кривой и
образуют грани сопровождающего
трехгранника. При этом
и
определяют соприкасающую плоскость
(б.м. дуга кривой в окрестности данной
точки есть дуга плоской кривой в
соприкасаемой плоскости с точностью
до б.м. высшего порядка);
и
- спрямляющая плоскость;
и
- нормальная плоскость.
57.Уравнения касательной, нормали, бинормали и плоскостей
сопровождающего трехгранника
Зная
и
,
или любые коллинеарные им неединичные
вектора T,
N
и B
выведем следующие уравнения
Для
этого в каноническом уравнении прямой
и в уравнении плоскости, проходящей через данную точку
принять
за
координаты
выбранной на кривой точки, за
или соответственно за
принять координаты того из векторов
или
,
который определяет направление искомой
прямой или нормали к искомой плоскости:
или
- для касательной или нормальной
плоскости,
или
- для главной нормали и спрямляющей
плоскости,
или
- для бинормали и соприкасающейся
плоскости.
Если
кривая задана векторным уравнением
или
то за вектор
направленный
по касательной можно принять
за
вектор
,
имеющий направление бинормали, можно
взять вектор
Но
тогда, за
можно принять векторное произведение
этих последних:
Т.о. в любой точке произвольной кривой мы можем определить все элементы сопроводдающего трехгранника.