Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВОПРОС-ОТВЕТ 2012(42)Ф.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
3.63 Mб
Скачать

Вопрос 30. Странично-сегментное распределение оперативной памяти. §5.3.2.4.Странично-сегментное распределение памяти.

Данный метод представляет собой комбинацию страничного и сегментного распределения памяти и, вследствие этого, сочетает в себе достоинства обоих подходов.

Виртуальное пространство процесса делится на сегменты, что позволяет назначать разные права доступа к разным частям кодов и данных программы. Каждый сегмент в свою очередь делится на виртуальные страницы, которые нумеруются в пределах сегмента.

Оперативная память делится на физические страницы. Перемещение данных между памятью и диском осуществляется не сегментами, а страницами. При этом часть страниц процесса размещается в оперативной памяти, а часть на диске. Для каждого сегмента создается своя таблица страниц, структура которой полностью совпадает со структурой таблицы страниц, используемой при страничном распределении. Для каждого процесса создается таблица сегментов, в которой указываются адреса таблиц страниц для всех сегментов данного процесса. Адрес таблицы сегментов загружается в специальный регистр процессора, когда активизируется соответствующий процесс.

Преобразование виртуального адреса в физический происходит в следующем порядке (рис. 5.12).

1. По номеру сегмента, заданному в виртуальном адресе, из таблицы сегментов извлекается физический адрес соответствующей таблицы страниц.

2. По номеру виртуальной страницы, заданному в виртуальном адресе, из таблицы страниц извлекается дескриптор, в котором указан номер физической страницы.

3. К номеру физической страницы пристыковывается младшая часть виртуального адреса – смещение.

Рис. 5.12. Схема преобразования виртуального адреса в физический

при сегментно-страничной организации памяти

Вопрос 31. Кэш-память. Принцип функционирования кэш-памяти. §5.4.1. Кэширование данных.

Кэш-память.

Кэширование (кэш-память) – это способ совместного функционирования двух типов запоминающих устройств (ЗУ), отличающихся временем доступа, при котором за счет динамического копирования наиболее часто используемой информации из "медленного" ЗУ в "быстрое" ЗУ уменьшается среднее время доступа к данным.

Кэширование является универсальным методом для ускорения доступа к оперативной памяти, дискам, компакт дискам и другим ЗУ. Механизм кэш-памяти реализуется автоматически системными средствами.

Кэш-памятью, или кэшем называют не только способ организации работы двух типов запоминающих устройств, но и одно из этих устройств – «быстрое» ЗУ. Оно стоит дороже и, как правило, имеет сравнительно небольшой объем.

Необходимость в кэш-памяти обусловлена следующим: чем выше быстродействие ЗУ, тем меньше его максимальный объем (ёмкость) и наоборот. При этом, чем выше быстродействие памяти, тем технически сложнее достигается и дороже обходится увеличение ее объема.

Память вычислительной машины представляет собой иерархию запоминающих устройств (ЗУ), отличающихся средним временем доступа к данным, объемом и стоимостью хранения одного бита (рис. 5.14).

Рис. 5.14. Иерархическая структура памяти

На самой верхней ступеньке иерархии находятся внутренние регистры процессора. Время доступа к регистрам зависит от быстродействия процессора и составляет несколько наносекунд. Общий объем регистров может составлять десятки или сотни байт.

Для повышения производительности при обмене данными между процессором и основной памятью используется быстродействующая память статического типа, называемая КЭШ-памятью. Быстродействие КЭШ-памяти выше быстродействия оперативной памяти. Как правило, в компьютерах используется два уровня КЭШ-памяти (Level 1 и Level 2). Объем КЭШ-памяти 1-го уровня составляет от нескольких десятков Кбайт до сотен Кбайт. Объем КЭШ-памяти 2-го уровня составляет от нескольких сотен Кбайт до нескольких Мбайт.

Оперативная или основная память служит для хранения программ и данных. Её быстродействие ниже, чем у КЭШ-памяти, а объем составляет от сотен Мбайт до нескольких Гбайт. Часть ОЗУ может использоваться как КЭШ для внешних запоминающих устройств.

Объем хранимой информации во внешнем запоминающем устройстве составляет:

- 0,7 Гбайт – CD; 5…17 Гбайт – DVD; 25…200 Гбайт – Blu-ray;

- сотни Гбайт – жесткие диски;

- десятки Тбайт – накопители на магнитной ленте (используются для резервного копирования информации).

Время доступа к данным для жестких дисков составляет порядка 10мс, для оптических дисков – 50…100мс, для накопителей на магнитной ленте – секунды или даже минуты, поскольку на них реализована память с последовательным доступом.

Таким образом, можно сделать вывод, что с увеличением быстродействия памяти (уменьшении времени доступа) увеличивается стоимость хранения данных в расчете на один бит. Использование КЭШ-памяти предоставляет собой компромиссное решение с целью увеличения производительности системы без резкого увеличения её стоимости.

Структура двухуровневой КЭШ-памяти микропроцессора показана на рис. 5.15. В микропроцессоре используется разделенная КЭШ-память 1 уровня для команд и для данных, что позволяет практически удвоить пропускную способность подсистемы памяти. Между КЭШ-памятью 1 уровня и оперативной памятью внутри корпуса микросхемы процессора располагается КЭШ-память 2 уровня. На материнской плате между КЭШ-памятью 2-го уровня и оперативной памятью может располагаться и КЭШ-память 3 уровня, но в большинстве персональных компьютеров она отсутствует. Обычно все содержимое КЭШ-памяти 1-го уровня находится в КЭШ-памяти 2-го уровня и т.д.

Рис. 5.15. Структура КЭШ-памяти микропроцессора