
- •Вопрос 1. Виды ресурсов вычислительной системы. §1.1 Виды ресурсов вычислительной системы.
- •Вопрос 2. Структура и виды программного обеспечения (по). Характеристика системного по. §1.2 Структура программного обеспечения.
- •Вопрос 3. Классификация ос. §2.1 Классификация операционных систем.
- •Вопрос 4. Назначение и основные функции операционной системы (ос) для автономного компьютера. §2.2 Операционные системы для автономного компьютера
- •Функциональные компоненты ос для автономного компьютера
- •Вопрос 5. Сетевые операционные системы: функциональные компоненты и варианты построения. §2.3 Сетевые операционные системы.
- •Функциональные компоненты сетевой ос
- •Варианты построения сетевых ос
- •Вопрос 6. Одноранговые и серверные операционные системы. §2.4 Одноранговые и серверные операционные системы.
- •Операционные системы в одноранговых сетях
- •Операционные системы в сетях с выделенными серверами
- •Вопрос 7. Принципы построения ос. §3.1 Принципы построения ос.
- •Вопрос 8. Виды программных модулей. §3.2 Виды программных модулей.
- •Вопрос 9. Ядро и вспомогательные модули ос. §3.3 Ядро и вспомогательные модули операционной системы.
- •Вопрос 10. Классическая архитектура ос. §3.4 Классическая архитектура операционной системы.
- •Вопрос 11. Микроядерная архитектура ос. §3.5 Микроядерная архитектура ос.
- •Вопрос 12. В чем заключается принцип безопасности и как он обеспечивается операционной системой? §3.6 Обеспечение безопасности вычислительной системы.
- •Вопрос 13. Что такое мультипрограммирование (многозадачность)? Реализация мультипрограммирования в системах пакетной обработки, разделения времени, реального времени. §4.1.1 Мультипрограммирование.
- •§4.1.2.Мультипрограммирование в системах пакетной обработки.
- •§4.1.3.Мультипрограммирование в системах разделения времени.
- •Мультипрограммирование в системах реального времени.
- •Вопрос 14. Мультипроцессорная обработка, архитектуры мультипроцессорных систем. §4.1.4.Мультипроцессорная обработка.
- •Вопрос 15. Что такое вычислительный процесс, поток? Состояния процесса. §4.2.1.Планирование процессов и потоков. Понятия «процесс» и «поток».
- •Вопрос 16. Реализация (создание) процессов и потоков. Дескрипторы. §4.2.2.Реализация (создание) процессов и потоков.
- •Вопрос 17. Планирование и диспетчеризация процессов и потоков. Вытесняющие и невытесняющие алгоритмы планирования. §4.2.3.Планирование и диспетчеризация потоков
- •§4.2.4.Вытесняющие и невытесняющие алгоритмы планирования
- •Вопрос 18. Алгоритмы планирования, основанные на квантовании, приоритетах, смешанные алгоритмы. §4.2.5.Алгоритмы планирования, основанные на квантовании.
- •Алгоритмы планирования, основанные на приоритетах.
- •Смешанные алгоритмы планирования.
- •Вопрос 19. Планирование в системах реального времени. §4.2.6.Планирование в системах реального времени.
- •Моменты перепланировки.
- •Вопрос 20. Мультипрограммирование на основе прерываний. Механизм прерываний. §4.3.1.Мультипрограммирование на основе прерываний. Назначение и типы прерываний.
- •§4.3.2.Механизм прерываний.
- •Вопрос 21. Необходимость синхронизации процессов и потоков. Критическая секция. §4.4 Синхронизация процессов и потоков.
- •§4.4.1.Критическая секция.
- •Вопрос 22. Способы реализации взаимных исключений путем запрещения прерываний, использования блокирующих переменных, системных вызовов. §4.4.2.Запрещение прерываний.
- •§4.4.3.Блокирующие переменные.
- •Вопрос 23. Назначение и использование семафоров. §4.4.4Семафоры.
- •Вопрос 24. Взаимные блокировки процессов. Методы предотвращения, обнаружения и ликвидации тупиков. §4.4.6. Синхронизирующие объекты ос.
- •Тупики.
- •Вопрос 25. Функции ос по управлению памятью. Типы адресов. Преобразование адресов. §5.1 Функции ос по управлению памятью.
- •§5.2 Типы адресов.
- •Вопрос 26. Методы распределения памяти без использования диска (фиксированными, динамическими, перемещаемыми разделами). §5.3.1. Методы распределения памяти.
- •§5.3.1 Распределение памяти без использования диска. Распределение памяти фиксированными разделами.
- •Распределение памяти динамическими разделами.
- •§5.3.1.Распределение памяти перемещаемыми разделами.
- •Вопрос 27. Понятие виртуальной памяти, ее назначение. Свопинг. §5.3.2.1. Виртуальная память. Понятие виртуальной памяти.
- •Вопрос 28. Страничное распределение оперативной памяти. §5.3.2.2.Страничное распределение памяти.
- •Вопрос 29. Сегментное распределение оперативной памяти. §5.3.2.3.Сегментное распределение памяти.
- •Вопрос 30. Странично-сегментное распределение оперативной памяти. §5.3.2.4.Странично-сегментное распределение памяти.
- •Вопрос 31. Кэш-память. Принцип функционирования кэш-памяти. §5.4.1. Кэширование данных.
- •§5.4.2.Функционирование кэш-памяти.
- •Вопрос 32. Способы отображения оперативной памяти на кэш (случайное, детерминированное, комбинированное отображение). § 5.4.3. Способы отображения основной памяти на кэш.
- •Вопрос 33. Физическая организация устройств ввода-вывода. §6.1 Физическая организация устройств ввода-вывода.
- •Вопрос 34. Принципы организации программного обеспечения ввода-вывода. §6.2 Организация программного обеспечения ввода-вывода.
- •Обработка прерываний.
- •Драйверы устройств.
- •Независимый от устройств слой операционной системы.
- •Пользовательский слой программного обеспечения.
- •§7.1.2.Типы файлов.
- •§7.1.3.Логическая организация файла.
- •Вопрос 36. Физическая организация файловой системы. Структура жесткого диска. §7.2 Физическая организация файловой системы.
- •Структура жесткого диска.
- •Вопрос 37. Физическая организация и адресация файла. Права доступа к файлу. §7.2.1.Физическая организация и адресация файла.
- •§7.2.2.Права доступа к файлу.
- •Кэширование диска.
- •Вопрос 38. Общая модель файловой системы. §7.3 Общая модель файловой системы.
- •Вопрос 39. Современные архитектуры файловых систем. §7.3. Современные архитектуры файловых систем.
- •Вопрос 40. Физические организации файловой системы fat. §7.6 Физическая организация файловой системы fat.
- •Вопрос 41. Физические организации файловой системы ntfs. §7.7. Физические организации файловой системы ntfs.
- •7.8 Сравнение файловых систем
- •Вопрос 42. Системы программирования: состав систем программирования. Этапы разработки по. §8 Состав систем программирования.
- •8.2 Компоненты систем программирования Текстовые редакторы
- •Трансляторы, компиляторы и интерпретаторы
- •Список литературы
§4.4.1.Критическая секция.
Важным понятием синхронизации потоков является понятие «критическая секция».
Критическая секция – это часть программы, которая должна выполняться без прерываний со стороны других потоков. Критическая секция всегда определяется по отношению к определенным критическим данным, при несогласованном изменении которых результат выполнения программы может быть непредсказуем. Во всех потоках, работающих с критическими данными, должна быть определена критическая секция, которая в общем случае состоит из разных последовательностей команд. Критическая секция, например, используется для предоставления доступа к разделяемым ресурсам ВС.
Чтобы исключить эффект гонок по отношению к разделяемым данным, необходимо обеспечить, чтобы в каждый момент в критической секции, связанной с этими данными, находился только один поток. Этот прием называют взаимным исключением. При этом неважно, находится этот поток в активном или в приостановленном состоянии.
Для реализации взаимных исключений используются различные способы: запрещение прерываний, блокирующие переменные, семафоры, синхронизирующие объекты ОС, рассмотренные ниже.
Вопрос 22. Способы реализации взаимных исключений путем запрещения прерываний, использования блокирующих переменных, системных вызовов. §4.4.2.Запрещение прерываний.
Поток при входе в критическую секцию, запрещает все прерывания, а при выходе из критической секции снова их разрешает. Это самый простой, но и самый неэффективный способ, так как опасно доверять управление системой пользовательскому потоку, который может надолго занять процессор, а при крахе потока в критической области крах потерпит вся система, потому что прерывания никогда не будут разрешены.
§4.4.3.Блокирующие переменные.
Для синхронизации потоков одного процесса программист может использовать глобальные блокирующие переменные, к которым все потоки процесса имеют прямой доступ.
С каждым разделяемым ресурсом связывается двоичная переменная, которая принимает значение 1, если ресурс свободен (то есть ни один процесс не находится в данный момент в критической секции, связанной с данным процессом), и значение 0, если ресурс занят. На рис. 4.9 показан фрагмент алгоритма потока, использующего для реализации взаимного исключения доступа к разделяемому ресурсу D блокирующую переменную F(D). Перед входом в критическую секцию поток проверяет, свободен ли ресурс D. Если он занят, то проверка циклически повторяется, если свободен, то значение переменной F(D) устанавливается в 0, и поток входит в критическую секцию. После того, как поток выполнит все действия с разделяемым ресурсом D, значение переменной F(D) снова устанавливается равным 1.
Рис. 4.9. Реализация критической секции с использованием
блокирующих переменных
Если все потоки написаны с использованием вышеописанных соглашений, то взаимное исключение гарантируется. При этом они могут быть прерваны ОС в любой момент и в любом месте. Однако, одно ограничение на прерывания все же имеется – операция проверки и установки блокирующей переменной должна быть неделимой. Для этой цели необходимо использовать соответствующие команды проверки-установки (в процессоре Pentium это BTC, BTR, BTS) или специальные системные примитивы атомарных операций.
Поясним это. Пусть в результате проверки переменной поток определил, что ресурс свободен, но сразу после этого, не успев установить переменную в 0, был прерван. За время его приостановки другой поток занял ресурс, вошел в свою критическую секцию, но также был прерван, не завершив работы с разделяемым ресурсом. Когда управление было возвращено первому потоку, он, считая ресурс свободным, установил признак занятости и начал выполнять свою критическую секцию. Таким образом, был нарушен принцип взаимного исключения, что потенциально может привести к нежелательным последствиям.
Данный способ реализации взаимного исключения имеет существенный недостаток: пока ресурс занят, поток, ожидающий его освобождения, будет непрерывно опрашивать блокирующую переменную, бесполезно тратя процессорное время, которое может быть использовано для выполнения какого-нибудь другого потока.
Для устранения этого недостатка в ОС Windows для работы с критическими секциями используются специальные системные вызовы: EnterCriticalSection() и LeaveCriticalSection().
При входе в критическую секцию (рис. 4.10) поток выполняет системный вызов EnterCriticalSection(), в рамках которого вначале выполняется проверка блокирующей переменной необходимого ресурса. Если ресурс занят, то циклический опрос далее не выполняется, а поток переводится в состояние ожидания освобождения ресурса D. Поток, который в это время использует ресурс D, после выхода из критической секции должен вызвать системную функцию LeaveCriticalSection(), в результате чего ресурс освобождается. ОС просматривает очередь ожидающих этот ресурс потоков и переводит поток, ожидающий событие D, в состояние «готовность».
Рис. 4.10. Реализация критической секции с использованием
системных функций