
- •Вопрос 1. Виды ресурсов вычислительной системы. §1.1 Виды ресурсов вычислительной системы.
- •Вопрос 2. Структура и виды программного обеспечения (по). Характеристика системного по. §1.2 Структура программного обеспечения.
- •Вопрос 3. Классификация ос. §2.1 Классификация операционных систем.
- •Вопрос 4. Назначение и основные функции операционной системы (ос) для автономного компьютера. §2.2 Операционные системы для автономного компьютера
- •Функциональные компоненты ос для автономного компьютера
- •Вопрос 5. Сетевые операционные системы: функциональные компоненты и варианты построения. §2.3 Сетевые операционные системы.
- •Функциональные компоненты сетевой ос
- •Варианты построения сетевых ос
- •Вопрос 6. Одноранговые и серверные операционные системы. §2.4 Одноранговые и серверные операционные системы.
- •Операционные системы в одноранговых сетях
- •Операционные системы в сетях с выделенными серверами
- •Вопрос 7. Принципы построения ос. §3.1 Принципы построения ос.
- •Вопрос 8. Виды программных модулей. §3.2 Виды программных модулей.
- •Вопрос 9. Ядро и вспомогательные модули ос. §3.3 Ядро и вспомогательные модули операционной системы.
- •Вопрос 10. Классическая архитектура ос. §3.4 Классическая архитектура операционной системы.
- •Вопрос 11. Микроядерная архитектура ос. §3.5 Микроядерная архитектура ос.
- •Вопрос 12. В чем заключается принцип безопасности и как он обеспечивается операционной системой? §3.6 Обеспечение безопасности вычислительной системы.
- •Вопрос 13. Что такое мультипрограммирование (многозадачность)? Реализация мультипрограммирования в системах пакетной обработки, разделения времени, реального времени. §4.1.1 Мультипрограммирование.
- •§4.1.2.Мультипрограммирование в системах пакетной обработки.
- •§4.1.3.Мультипрограммирование в системах разделения времени.
- •Мультипрограммирование в системах реального времени.
- •Вопрос 14. Мультипроцессорная обработка, архитектуры мультипроцессорных систем. §4.1.4.Мультипроцессорная обработка.
- •Вопрос 15. Что такое вычислительный процесс, поток? Состояния процесса. §4.2.1.Планирование процессов и потоков. Понятия «процесс» и «поток».
- •Вопрос 16. Реализация (создание) процессов и потоков. Дескрипторы. §4.2.2.Реализация (создание) процессов и потоков.
- •Вопрос 17. Планирование и диспетчеризация процессов и потоков. Вытесняющие и невытесняющие алгоритмы планирования. §4.2.3.Планирование и диспетчеризация потоков
- •§4.2.4.Вытесняющие и невытесняющие алгоритмы планирования
- •Вопрос 18. Алгоритмы планирования, основанные на квантовании, приоритетах, смешанные алгоритмы. §4.2.5.Алгоритмы планирования, основанные на квантовании.
- •Алгоритмы планирования, основанные на приоритетах.
- •Смешанные алгоритмы планирования.
- •Вопрос 19. Планирование в системах реального времени. §4.2.6.Планирование в системах реального времени.
- •Моменты перепланировки.
- •Вопрос 20. Мультипрограммирование на основе прерываний. Механизм прерываний. §4.3.1.Мультипрограммирование на основе прерываний. Назначение и типы прерываний.
- •§4.3.2.Механизм прерываний.
- •Вопрос 21. Необходимость синхронизации процессов и потоков. Критическая секция. §4.4 Синхронизация процессов и потоков.
- •§4.4.1.Критическая секция.
- •Вопрос 22. Способы реализации взаимных исключений путем запрещения прерываний, использования блокирующих переменных, системных вызовов. §4.4.2.Запрещение прерываний.
- •§4.4.3.Блокирующие переменные.
- •Вопрос 23. Назначение и использование семафоров. §4.4.4Семафоры.
- •Вопрос 24. Взаимные блокировки процессов. Методы предотвращения, обнаружения и ликвидации тупиков. §4.4.6. Синхронизирующие объекты ос.
- •Тупики.
- •Вопрос 25. Функции ос по управлению памятью. Типы адресов. Преобразование адресов. §5.1 Функции ос по управлению памятью.
- •§5.2 Типы адресов.
- •Вопрос 26. Методы распределения памяти без использования диска (фиксированными, динамическими, перемещаемыми разделами). §5.3.1. Методы распределения памяти.
- •§5.3.1 Распределение памяти без использования диска. Распределение памяти фиксированными разделами.
- •Распределение памяти динамическими разделами.
- •§5.3.1.Распределение памяти перемещаемыми разделами.
- •Вопрос 27. Понятие виртуальной памяти, ее назначение. Свопинг. §5.3.2.1. Виртуальная память. Понятие виртуальной памяти.
- •Вопрос 28. Страничное распределение оперативной памяти. §5.3.2.2.Страничное распределение памяти.
- •Вопрос 29. Сегментное распределение оперативной памяти. §5.3.2.3.Сегментное распределение памяти.
- •Вопрос 30. Странично-сегментное распределение оперативной памяти. §5.3.2.4.Странично-сегментное распределение памяти.
- •Вопрос 31. Кэш-память. Принцип функционирования кэш-памяти. §5.4.1. Кэширование данных.
- •§5.4.2.Функционирование кэш-памяти.
- •Вопрос 32. Способы отображения оперативной памяти на кэш (случайное, детерминированное, комбинированное отображение). § 5.4.3. Способы отображения основной памяти на кэш.
- •Вопрос 33. Физическая организация устройств ввода-вывода. §6.1 Физическая организация устройств ввода-вывода.
- •Вопрос 34. Принципы организации программного обеспечения ввода-вывода. §6.2 Организация программного обеспечения ввода-вывода.
- •Обработка прерываний.
- •Драйверы устройств.
- •Независимый от устройств слой операционной системы.
- •Пользовательский слой программного обеспечения.
- •§7.1.2.Типы файлов.
- •§7.1.3.Логическая организация файла.
- •Вопрос 36. Физическая организация файловой системы. Структура жесткого диска. §7.2 Физическая организация файловой системы.
- •Структура жесткого диска.
- •Вопрос 37. Физическая организация и адресация файла. Права доступа к файлу. §7.2.1.Физическая организация и адресация файла.
- •§7.2.2.Права доступа к файлу.
- •Кэширование диска.
- •Вопрос 38. Общая модель файловой системы. §7.3 Общая модель файловой системы.
- •Вопрос 39. Современные архитектуры файловых систем. §7.3. Современные архитектуры файловых систем.
- •Вопрос 40. Физические организации файловой системы fat. §7.6 Физическая организация файловой системы fat.
- •Вопрос 41. Физические организации файловой системы ntfs. §7.7. Физические организации файловой системы ntfs.
- •7.8 Сравнение файловых систем
- •Вопрос 42. Системы программирования: состав систем программирования. Этапы разработки по. §8 Состав систем программирования.
- •8.2 Компоненты систем программирования Текстовые редакторы
- •Трансляторы, компиляторы и интерпретаторы
- •Список литературы
Вопрос 17. Планирование и диспетчеризация процессов и потоков. Вытесняющие и невытесняющие алгоритмы планирования. §4.2.3.Планирование и диспетчеризация потоков
На протяжении существования процесса выполнение его потоков может быть многократно прервано и продолжено. В системе, не поддерживающей потоки, все сказанное ниже о планировании и диспетчеризации относится к процессу в целом.
Переход от выполнения одного потока к другому осуществляется в результате планирования и диспетчеризации.
Планирование потоков включает в себя решение двух задач:
- определение момента времени для смены текущего активного потока;
- выбор для выполнения потока из очереди готовых потоков.
Существует множество различных алгоритмов планирования потоков, по-своему решающих каждую из приведенных выше задач. Планирование потоков осуществляется на основе информации, хранящейся в дескрипторах процессов и потоков. При планировании могут приниматься во внимание приоритеты потоков, время их ожидания в очереди, накопленное время выполнения, интенсивность обращений к вводу-выводу и другие факторы. ОС планирует выполнение потоков независимо от того, принадлежат ли они одному или разным процессам. Так, например, после выполнения потока некоторого процесса ОС может выбрать для выполнения другой поток того же процесса или же назначить к выполнению поток другого процесса.
В большинстве операционных систем универсального назначения планирование осуществляется динамически (on-line), то есть решения принимаются во время работы системы на основе анализа текущей ситуации. ОС работает в условиях неопределенности – потоки и процессы появляются в случайные моменты времени и также непредсказуемо завершаются. Динамические планировщики могут гибко приспосабливаться к изменяющейся ситуации и не используют никаких предположений о мультипрограммной смеси. Однако для выработки оптимального решения динамический планировщик требует значительного времени.
Статический тип планирования может быть использован в специализированных системах, в которых весь набор одновременно выполняемых задач определен заранее, например, в системах реального времени. Статический планировщик принимает решения о планировании не во время работы системы, а заранее (off-line). Динамический и статический планировщики можно уподобить диспетчеру железной дороги, который пропускает поезда строго по предварительно составленному расписанию, и регулировщику на перекрестке автомобильных дорог, который решает, какую машину остановить, а какую пропустить, в зависимости от ситуации.
Результатом работы статического планировщика является таблица, называемая расписанием, в которой указывается, какому потоку/процессу, когда и на какое время должен быть предоставлен процессор. После того как расписание готово, оно может использоваться операционной системой для переключения потоков и процессов. При этом накладные расходы ОС на исполнение расписания оказываются значительно меньшими, чем при динамическом планировании, и сводятся лишь к диспетчеризации потоков/процессов.
Диспетчеризация заключается в реализации найденного в результате планирования (динамического или статистического) решения, то есть в переключении процессора с одного потока на другой. Диспетчеризация сводится к следующему:
- сохранение контекста текущего потока, который требуется сменить;
- загрузка контекста нового потока, выбранного в результате планирования;
- запуск нового потока на выполнение.
ОС выполняет планирование потоков, принимая во внимание их состояние. В мультипрограммной системе поток/процесс может находиться в одном из трех основных состояний: готовность, выполнение, ожидание. В течение своей жизни каждый поток переходит из одного состояния в другое в соответствии с алгоритмом планирования потоков, принятым в данной операционной системе.
В состоянии выполнения в однопроцессорной системе может находиться не более одного потока, а в каждом из состояний ожидания и готовности – несколько потоков. Эти потоки образуют очереди соответственно ожидающих и готовых потоков. Очереди потоков организуются путем объединения в списки описателей отдельных потоков. Каждый описатель потока, кроме всего прочего, содержит по крайней мере одну ссылку на другой описатель, соседствующий с ним в очереди. Такая организация очередей позволяет легко их переупорядочивать, включать и исключать потоки, переводить потоки из одного состояния в другое. В качестве примера на рис. 4.4 показана очередь готовых потоков, для которой запланированный порядок выполнения выглядит так: А, В, Е, D, С.
Рис. 4.4. Очередь потоков