- •Основные понятия геометрической оптики.
- •Кардинальные элементы оптической системы
- •Передний фокус и передняя фокальная плоскость оптической системы.
- •Передняя и задняя главные плоскости и главные точки оптической системы.
- •Переднее и заднее фокусные расстояния.
- •Узловые точки оптической системы.
- •Построение изображений и хода лучей в идеальной оптической системе.
- •Тонкая линза
- •Оптические системы
- •Светосила оптической системы.
- •Интерференция световых волн. Когерентность волн.
- •Зеркала Френеля.
- •Бипризма Френеля.
- •Опыт Юнга
- •Интерференция в тонких пленках.
- •Просветление оптики.
- •Практические применения интерференции. Интерферометры
- •Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля. Метод зон Френеля. Дифракция Френеля на простейших преградах (круглом отверстии, крае полуплоскости).
- •Спираль Корню.
- •Дифракция Фраунгофера от щели
- •Дифракция на дифракционной решетке Пропускающие решетки. Отражательные решетки.
- •П олучение поляризованного света. Прохождение света через поляризатор. Закон Малюса.
- •Призмы Николя (Поляризационные приборы и использование поляризованных лучей).
- •Отражение света на границе двух прозрачных сред. Формулы Френеля. Угол Брюстера.
- •Оптически активные вещества.
- •Теория вращения плоскости поляризации.
- •Вращение плоскости поляризации в магнитном поле.
- •Закон преломления света. Явление дисперсии. Нормальная и аномальная дисперсии.
- •Элементарная теория дисперсии света. Электронная теория дисперсии
Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля. Метод зон Френеля. Дифракция Френеля на простейших преградах (круглом отверстии, крае полуплоскости).
П
оместим
на пути параллельного пучка света
плоскость и будем наблюдать дальнейший
ход спространения световых лучей на
экране Е. Если бы волна представляла
собой действительно пучок параллельных
прямых, то тень от объекта, поставленного
на пути её распространения, должна бы
иметь на экране совершенно четкие
контуры. Это было предсказано геометрической
оптикой и подтверждено грубыми опытами.
Это "явление огибания" края препятствия волной называется дифракцией и проявляется всякий раз, когда на пути распространения фронт волны тем или иным способом ограничивается.
Явление дифракции, которое не могла объяснить геометрическая оптика, находится в тесной связи с явлением интерференции и может быть объяснено на основании принципа Гюйгенса.
Р
ис.1.
Вид дифракционной картины от плоскости
ьСогласно принципу Гюйгенсу каждую
точку волновой поверхности следует
рассматривать как источник элементарных
сферических волн, огибающая их поверхность
служит новой волновой поверхностью
(рис.2 ).
Объясним явление дифракции на краю плоскости Р, проиллюстрированное на рис.1, на основании принципа Гюйгенса.
Волновая поверхность Σ является источником вторичных сферических волн (рис.3). Каждая точка поверхности Σ эмитирует световые волны в различных направлениях. Выберем те лучи, которые собираются в точке экрана. Эти лучи когерентны, т.е. имеют одинаковую частоту, постоянную разность фаз, следовательно, могут интерферировать. Если лучи приходят в точку Р в фазе, то происходит усиление света и мы наблюдаем световую полосу. В некоторую точку P1 лучи приходят в противофазе и происходит взаимное ослабление света. Тогда в точке Р1 мы наблюдаем тёмную полосу и т.д. Аналогично можно объяснить явление дифракции на щели на круглом отверстии и на других преградах.
Спираль Корню.
Н
а
рис. 128.8, б показаны только колебания,
обусловленные зонами, лежащими справа
от точки Р. Зоны
с номерами т к т'
расположены симметрично
относительно Р.
Поэтому естественно
при построении диаграммы векторы,
изображающие соответствующие этим
зонам колебания, располагать симметрично
относительно начала координат О
(рис, 128.9). Если ширину зон устремить
к нулю, ломан-ая линия, изображенная на
рис. 128.9, превратится в плавную кривую
(рис. 128.9), которая называется спиралью
Корню.
Уравнение спирали Корню в параметрической форме имеет вид
(128.8)
Эти интегралы называются интегралами Френеля. Они не берутся в элементарных функциях, однако имеются таблицы, по которым можно находить значения интегралов для разных v. Смысл параметра у заключается в том, что \v\ дает длину дуги кривой Корню, измеряемую от начала координат.
Числа, отмеченные вдоль кривой на рис. 128.9, дают значения параметра v. Точки F1 и f2, к которым асимптотически приближается кривая при стремлении v к +∞ и -∞, называются фокусами или полюсами спирали Корню.
