Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Плюшки.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
311.72 Кб
Скачать

18. Экстремум функции двух переменных

Определение 1.11. Пусть задана функция двух переменных z=z(x,y), (x,y) D. ТочкаM0(x0;y0) - внутренняя точка области D.

Если в D присутствует такая окрестность UM0 точки M0, что для всех точек

то точка M0 называется точкой локального максимума. А само значение z(M0) - локальным максимумом.

А если же для всех точек

то точка M0 называется точкой локального минимума функции z(x,y). А само значение z(M0) - локальным минимумом.

Локальный максимум и локальный минимум называются локальными экстремумами функции z(x,y). На рис. 1.4 поясняется геометрический смысл локального максимума: M0 - точка максимума, так как на поверхности z =z (x,y) соответствующая ей точка C0 находится выше любой соседней точки C (в этом локальность максимума).

Заметим, что на поверхности в целом есть точки (например, В), которые находятся выше C0, но эти точки (например, В) не являются "соседними" с точкой C0.

В частности, точке. В соответствует понятие глобального максимума:

Аналогично определяется и глобальный минимум:

Нахождение глобальных максимумов и минимумов будет рассмотрено в п.1.10.

Теорема 1.3 (необходимые условия экстремума).

Пусть задана функция z =z (x,y), (x,y) D. Точка M0(x0;y0 D - точка локального экстремума.

Если в этой точке существуют z'x и z'y, то

Геометрическое доказательство "очевидно". Если в точке C0 на (рис.1.4) провести касательную плоскость, то она "естественно" пройдет горизонтально, т. е. под углом  к оси Ох и к оси Оу.

Тогда в соответствии с геометрическим смыслом частных производных (рис.1.3):

что и требовалось доказать.

Определение 1.12.

Если в точке M0 выполняются условия (1.41), то она называется стационарной точкой функции z (x,y).

Теорема 1.4 (достаточные условия экстремума).

Пусть задана z =z (x,y), (x,y) D, которая имеет частные производные второго порядка в некоторой окрестности точки M0(x0,y0) D. Причем M0 - стационарная точка (т. е. необходимые условия (1.41) выполнены). Вычислим:

Если:

Доказательство теоремы использует темы (формула Тейлора функции нескольких переменных и теория квадратичных форм), которые в этом пособии не рассматриваются.

  1. Определенный интеграл

Пусть функция y=f(x) определена на отрезке [a,b], а<в. Разобьем этот отрезок на n произвольных частей точками: а=х012<…<хi-1in=b.

Обозначим это разбиение через τ, a точки x0, x1,…,xn будем называть точками разбиения. В каждом из полученных частичных отрезков [xi-1,xi] выберем произвольную точку ξi(xi-1 ξi xi). Через Δxiобозначим разность xi-xi-1, которую условимся называть длиной частичного отрезка [xi-1, xi].

Образуем сумму:

которую назовем интегральной суммой для функции f(x) на [a,b], соответствующее данному разбиению [a,b] на частичные отрезки и данному выбору промежуточных точек ξi. Геометрический смысл суммы σ очевиден: это сумма площадей прямоугольников с основаниями Δx1, Δx2, … , Δxn и высотами f(ξi), f(ξ2), … , f(ξn) (рис 1) (если f(x) 0).

Обозначим через λ длину наибольшего частичного отрезка разбиения τ: 

ОПРЕДЕЛЕНИЕ. Если существует конечный предел I интегральной суммы (1) при λ→0, то этот предел называется определенным интегралом от функции f(x) по отрезку [a, b] и обозначается следующим образом:

В этом случае функция f(x) называется интегрируемой на [a, b]. Числа a и b называются соответственно нижним и верхним пределами интегрирования, f(x) – подынтегральной функцией, х – переменной интегрирования.