
- •Вступ до теорії функції комплексного змінного. Тригонометрична і показникова форми комплексних чисел.
- •Дії над комплексними числами заданими в тригонометричній і показниковій формі
- •Загальний висновок про квадратні рівняння
- •Елементи лінійної алгебри. Визначники вищих порядків.
- •Обчислення визначників вищих порядків.
- •Ранг матриці.
- •Обернена матриця.
- •Знайти матрицю, обернену до матриці і перевірити, чи справджуються рівності .
- •Системи лінійних рівнянь. Умови сумісності систем лінійних рівнянь. Теорема Кронекера-Капеллі. Основні визначення
- •Формули Крамера.
- •Метод Гауса.
- •Матричний запис системи лінійних рівнянь і її розв’язування.
- •Аналітична геометрія. Системи координат. Вектори. Лінійні операції над векторами
- •Довжину вектора будемо позначати таким чином:
- •Додавання векторів.
- •Поняття про лінію та її рівняння.
- •Відстань від точки до прямої.
- •Різні види рівнянь прямої в просторі. Взаємне розміщення прямих в просторі.
- •Рівняння площини, що проходить через три задані точки. Рівняння площини у відрізках на осях.
- •Властивості числових границь мають вигляд:
- •Основні теореми про границі
- •Урахуємо, що , а функція є обмеженою. Визначні границі.
- •Неперервність функції на відрізку. Властивості.
- •1. Неперервність функції в точці і на відрізку
- •2. Класифікація розривів функції
- •3. Властивості неперервних функцій та дії з ними
- •Задачі, що приводять до поняття похідної. Означення похідної. Її геометричний та механічний зміст. Дотична до кривої.
- •Означення похідної
- •Геометричний зміст похідної
- •Механічний зміст похідної
- •Рівняння дотичної і нормалі до плоскої кривої
- •Залежність між неперервністю та диференційованістю функції. Правила диференціювання. Похідні основних елементарних функцій.
- •Основні правила диференціювання
- •Похідні від основних елементарних функцій
- •Монотонність функції. Екстремум функції
- •Зразки розв’язування задач
- •Означення диференціала функції однієї змінної. Правила знаходження диференціалу.
- •Правила диференціювання:
- •Диференціал складеної функції. Інваріантність форми диференціалу.
- •Зауваження
- •Інваріантність форми першого диференціала
- •Приклад 1
- •Застосування диференціалу до наближених обчислень
- •Теореми Ферма і Ролля, Коші і Лагранжа.
- •Формула Тейлора.
- •Функції багатьох змінних. Множини точок на площині
- •Основні поняття та означення функції багатьох змінних. Способи задання функції. Область визначення. Графіки. Лінії рівня.
- •Похідна за напрямом. Градієнт.
- •Частинні похідні та диференціали вищих порядків.
- •Неявні функції. Похідні неявних функцій.
- •Поняття умовного екстремума.
- •Прямий метод знаходження точок умовного екстремума (метод включення).
- •Метод Лагранжа знаходження точок умовного екстремума. Метод найменших квадратів.
- •Метод найменших квадратів
- •Знаходження найбільшого та найменшого значень неперервної функції на замкненій обмеженій множині
- •Інтегральне числення. Первісна. Невизначений інтеграл.
- •Зразки розв’язування задач
- •Інтегрування раціональних дробів, тригонометричних та ірраціональних функцій.
- •Зразки розв’язування задач
- •Інтегрування функцій, раціонально залежних від тригонометричних
- •Зразки розв’язування задач
- •Інтегрування деяких іраціональних функцій
- •Зразки розв’язування задач
- •Деякі інтеграли, що не виражаються через елементарні функції
- •Визначений інтеграл із змінною верхньою межею. Теорема Ньютона-Лейбніца.
- •Зразки розв’язування задач
- •Наближене обчислення визначеного інтеграла. Формули прямокутників і трапеції.
- •Невласні інтеграли. Поняття про подвійний інтеграл. Зведення подвійного інтеграла до повторного. Невласні інтеграли першого роду (з нескінченими межами)
- •Ознаки збіжності невласних інтегралів першого роду
- •Зразки розв’язування задач
- •Диференціальні рівняння. Наближені методи розв’язування диференціальних рівнянь.
- •Однорідні диференціальні рівняння
- •Диференціальні рівняння у повних диференціалах
- •1. Загальна теорія
- •2. Множник, що Інтегрує
- •Зниження порядку деяких диференціальних рівнянь другого порядку
- •Рівняння вигляду .
- •Зразки розв’язування задач
- •Ряди. Достатні ознаки збіжності для рядів з додатними членами. Використання ознак збіжності рядів з додатними членами.
- •Знакозмінні ряди. Абсолютна та умовна збіжність знакозмінних рядів.
- •Знакопочергові ряди. Ознака Лейбніца.
- •Зразки розв’язування задач
- •Степеневі ряди. Інтервал і радіус збіжності степеневого ряду.
- •Зразки розв’язування задач
- •Диференціювання та інтегрування степеневих рядів.
- •Ряди Тейлора і Маклорена.
- •Застосування рядів для наближених обчислень.
Метод Гауса.
Для розв’язування систем лінійних рівнянь застосовують метод, який називають методом Гаусса або методом виключення змінних. Суть методу Гаусса розв’язування систем лінійних рівнянь розглянемо за допомогою матриць. Його ідея полягає у зведенні розширеної матриці системи за допомогою елементарних перетворень матриці до трикутної матриці.
Трикутною називають матрицю, у якої під головною діагоналлю всі елементи рівні нулю.
Елементарними перетвореннями матриці є такі перетворення:
перестановка двох рядків матриці;
множення всіх елементів рядка на одне і те ж число, відмінне від нуля;
додавання елементів якого-небудь рядка матриці, помножених на одне і те ж число, до відповідних елементів іншого рядка;
відкидання рядків матриці, елементами яких є нулі.
Проводячи елементарні перетворення над матрицею системи, отримують нову систему рівнянь, яка еквівалентна заданій, але з новими коефіцієнтами та вільними членами. Одержують трикутну систему рівнянь, із якої визначають невідомі.
Приклад. Методом Гаусса розв’язати систему лінійних рівнянь
Розв’язання. Складемо розширену матрицю системи і будемо робити над нею необхідні елементарні перетворення, щоб одержати трикутну матрицю. На початку переставимо перше і третє рівняння місцями, а потім помножимо елементи першого рядка відповідно на мінус три, мінус два та мінус два і одержані результати додамо відповідно до елементів другого, третього та четвертого рядків. Аналогічно вчинимо з елементами другого, а потім третього рядків. Одержимо матрицю
.
Система лінійних рівнянь матиме вигляд
З
третього рівняння
.
З другого рівняння одержали
,
а з першого одержуємо
.
Відповідь:
.
Матричний запис системи лінійних рівнянь і її розв’язування.
Матричний спосіб можна застосувати, якщо кількість рівнянь і кількість невідомих співпадають, а крім того, матриця системи має обернену.
Запишемо систему (5) у матричному вигляді. Для цього введемо матриці виду:
.
Користуючись правилом множення матриць, систему (5) запишемо у матричному вигляді
. (7)
Розв’язок цього рівняння має вигляд
, (8)
де
є оберненою матрицею до матриці
.
Приклад. Розв’язати систему лінійних рівнянь матричним способом.
Розв’язання. Перепишемо задану систему у вигляді (7). Для цього складемо матриці виду
Розв’язок
системи будемо шукати у вигляді (8).
Необхідно знайти обернену матрицю
до матриці
.
Обернена матриця існує, бо
(див. приклад 2). Знайдемо алгебраїчні
доповнення для кожного елемента матриці
:
Складемо обернену матрицю згідно формули (3). Одержимо
.
Помножимо
обернену матрицю на матрицю
і одержимо шукану матрицю
.
Маємо
.
Відповідь: .
Аналітична геометрія. Системи координат. Вектори. Лінійні операції над векторами
Розглянемо
напрямлений відрізок
,
де А
– початок, В
– кінець.
Будемо називати його вектором.