
- •Вступ до теорії функції комплексного змінного. Тригонометрична і показникова форми комплексних чисел.
- •Дії над комплексними числами заданими в тригонометричній і показниковій формі
- •Загальний висновок про квадратні рівняння
- •Елементи лінійної алгебри. Визначники вищих порядків.
- •Обчислення визначників вищих порядків.
- •Ранг матриці.
- •Обернена матриця.
- •Знайти матрицю, обернену до матриці і перевірити, чи справджуються рівності .
- •Системи лінійних рівнянь. Умови сумісності систем лінійних рівнянь. Теорема Кронекера-Капеллі. Основні визначення
- •Формули Крамера.
- •Метод Гауса.
- •Матричний запис системи лінійних рівнянь і її розв’язування.
- •Аналітична геометрія. Системи координат. Вектори. Лінійні операції над векторами
- •Довжину вектора будемо позначати таким чином:
- •Додавання векторів.
- •Поняття про лінію та її рівняння.
- •Відстань від точки до прямої.
- •Різні види рівнянь прямої в просторі. Взаємне розміщення прямих в просторі.
- •Рівняння площини, що проходить через три задані точки. Рівняння площини у відрізках на осях.
- •Властивості числових границь мають вигляд:
- •Основні теореми про границі
- •Урахуємо, що , а функція є обмеженою. Визначні границі.
- •Неперервність функції на відрізку. Властивості.
- •1. Неперервність функції в точці і на відрізку
- •2. Класифікація розривів функції
- •3. Властивості неперервних функцій та дії з ними
- •Задачі, що приводять до поняття похідної. Означення похідної. Її геометричний та механічний зміст. Дотична до кривої.
- •Означення похідної
- •Геометричний зміст похідної
- •Механічний зміст похідної
- •Рівняння дотичної і нормалі до плоскої кривої
- •Залежність між неперервністю та диференційованістю функції. Правила диференціювання. Похідні основних елементарних функцій.
- •Основні правила диференціювання
- •Похідні від основних елементарних функцій
- •Монотонність функції. Екстремум функції
- •Зразки розв’язування задач
- •Означення диференціала функції однієї змінної. Правила знаходження диференціалу.
- •Правила диференціювання:
- •Диференціал складеної функції. Інваріантність форми диференціалу.
- •Зауваження
- •Інваріантність форми першого диференціала
- •Приклад 1
- •Застосування диференціалу до наближених обчислень
- •Теореми Ферма і Ролля, Коші і Лагранжа.
- •Формула Тейлора.
- •Функції багатьох змінних. Множини точок на площині
- •Основні поняття та означення функції багатьох змінних. Способи задання функції. Область визначення. Графіки. Лінії рівня.
- •Похідна за напрямом. Градієнт.
- •Частинні похідні та диференціали вищих порядків.
- •Неявні функції. Похідні неявних функцій.
- •Поняття умовного екстремума.
- •Прямий метод знаходження точок умовного екстремума (метод включення).
- •Метод Лагранжа знаходження точок умовного екстремума. Метод найменших квадратів.
- •Метод найменших квадратів
- •Знаходження найбільшого та найменшого значень неперервної функції на замкненій обмеженій множині
- •Інтегральне числення. Первісна. Невизначений інтеграл.
- •Зразки розв’язування задач
- •Інтегрування раціональних дробів, тригонометричних та ірраціональних функцій.
- •Зразки розв’язування задач
- •Інтегрування функцій, раціонально залежних від тригонометричних
- •Зразки розв’язування задач
- •Інтегрування деяких іраціональних функцій
- •Зразки розв’язування задач
- •Деякі інтеграли, що не виражаються через елементарні функції
- •Визначений інтеграл із змінною верхньою межею. Теорема Ньютона-Лейбніца.
- •Зразки розв’язування задач
- •Наближене обчислення визначеного інтеграла. Формули прямокутників і трапеції.
- •Невласні інтеграли. Поняття про подвійний інтеграл. Зведення подвійного інтеграла до повторного. Невласні інтеграли першого роду (з нескінченими межами)
- •Ознаки збіжності невласних інтегралів першого роду
- •Зразки розв’язування задач
- •Диференціальні рівняння. Наближені методи розв’язування диференціальних рівнянь.
- •Однорідні диференціальні рівняння
- •Диференціальні рівняння у повних диференціалах
- •1. Загальна теорія
- •2. Множник, що Інтегрує
- •Зниження порядку деяких диференціальних рівнянь другого порядку
- •Рівняння вигляду .
- •Зразки розв’язування задач
- •Ряди. Достатні ознаки збіжності для рядів з додатними членами. Використання ознак збіжності рядів з додатними членами.
- •Знакозмінні ряди. Абсолютна та умовна збіжність знакозмінних рядів.
- •Знакопочергові ряди. Ознака Лейбніца.
- •Зразки розв’язування задач
- •Степеневі ряди. Інтервал і радіус збіжності степеневого ряду.
- •Зразки розв’язування задач
- •Диференціювання та інтегрування степеневих рядів.
- •Ряди Тейлора і Маклорена.
- •Застосування рядів для наближених обчислень.
Похідні від основних елементарних функцій
За аналогією з попередніми прикладами можна дістати похідні від основних елементарних функцій:
1.
;
2.
;
3.
; 4.
;
5.
; 6.
;
7.
; 8.
;
9.
; 10.
;
11.
; 12.
;
13.
;
14.
.
Продиференціювати подані далі функції.
Приклад.
.
Дана функція є алгебраїчною сумою функцій, тому використовуємо теорему 2:
.
У здобутому виразі
перший доданок алгебраїчної суми є
добуток сталої величини на степеневу
функцію
— застосуємо до нього теорему 4 і формулу
(2) таблиці похідних; другий — ірраціональна
функція з показником
— застосуємо формулу (2) таблиці похідних;
третій — логарифмічна функція з основою
е
— використаємо формулу (5):
.
Приклад.
.
Задана
функція складна: зовнішня — показникова
функція з основою 6, внутрішня для неї
— обернена тригонометрична. Обернена
тригонометрична, у свою чергу, є складною,
для якої внутрішня функція — алгебраїчна
сума
.
Для суми аргументом (скінченним) є х.
Таким чином, задана функція є суперпозицією трьох функцій.
При диференціюванні послідовно застосовуємо два рази теорему 6:
У цьому виразі знизу біля кожної квадратної дужки вказано аргумент, за яким слід диференціювати функцію, взяту в дужки.
Тепер послідовно скористаємося формулами (4), (11), (2) таблиці похідних та теоремами 1, 2. Дістанемо:
.
Взагалі використані правила та формули не фіксують, а записують кінцевий результат їх застосування.
Приклад.
.
Задана функція є степенево-показниковим виразом виду
,
де
. (4.5)
Прологарифмуємо функцію (4.5) за основою е:
.
(4.6)
Оскільки
і
— складні функції, після диференціювання
обох частин рівності (4.6) дістанемо:
.
Звідси
.
Таким чином, дістали формулу для знаходження похідної від степенево-показникової функції виду (4.5).
.
(4.7)
У даному випадку формула (4.7) виглядає як
.
Монотонність функції. Екстремум функції
Функція
називається
зростаючою
на інтервалі
,
якщо
для будь-яких
і
,
що належать до цього інтервалу, і таких,
що
<
,
справджується нерівність
<
.
Функція
називається спадною
на інтервалі
,
якщо для будь-яких
і
,
що належать до цього інтервалу, і таких,
що
<
,
справджується
нерівність
>
.
Як зростаючі, так і спадні функції називаються монотонними, а інтервали, в яких функція зростає або спадає – інтервалами монотонності.
Зростання
і спадання функції
характеризується знаком її похідної:
якщо у деякому інтервалі
>
,
то функція зростає в цьому інтервалі;
якщо ж
<
,
то функція спадає в цьому інтервалі.
Інтервали монотонності можуть відділятися один від одного або точками, де похідна дорівнює нулю, або точками, де похідна не існує. Ці точки називаються критичними точками.
Отже,
щоб
знайти інтервали монотонності функції
,
треба:
знайти область визначення функції;
знайти похідну даної функції;
знайти критичні точки з рівняння
та за умови, що не існує;
розділити критичними точками область визначення на інтервали і у кожному з них визначити знак похідної.
На інтервалах, де похідна додатна, функція зростає, а де від’ємна – спадає.