- •Програма самостійної роботи студентів спеціальності
- •5.05010201 "Обслуговування комп’ютерних систем і мереж"
- •Тема 1.1. Комплексні числа.
- •Тема 2.1. Елементи теорії матриць та визначників
- •Тема 2.2. Загальна теорія систем лінійних рівнянь
- •Тема 5.1. Основні поняття
- •Тема 5.2. Диференційованість функції багатьох змінних.
- •Тема 5.3. Дослідження функцій багатьох змінних на екстремум, умовний екстремум.
- •Тема 6.1. Невизначений інтеграл.
- •Тема 6.2. Визначений інтеграл
- •Тема 7.1. Диференціальні рівняння
- •Тема 8.1.Числові ряди.
- •Тема 8.2.Функціональні ряди.
- •Орієнтований тематичний план з тем, які винесені на самостійне вивчення
- •Глава 3. §6. П.6.1, 6.5
- •Дії над комплексними числами заданими в тригонометричній і показниковій формі
- •Глава 3. §6. П.6.1, 6.5
- •Загальний висновок про квадратні рівняння
- •Елементи лінійної алгебри. Визначники вищих порядків.
- •Глава 1.§1.П1.3
- •Обчислення визначників вищих порядків.
- •Глава 1.§1.П1.3
- •Ранг матриці.
- •Глава 1.§2.П2.4
- •Обернена матриця.
- •Глава 1. § 3. П.3.5.
- •Системи лінійних рівнянь. Умови сумісності систем лінійних рівнянь. Теорема Кронекера-Капеллі.
- •Глава 1.§ 3.П3.1, 3.6.
- •Формули Крамера.
- •Глава 1.§ 3.П3.2.
- •Метод Гауса.
- •Глава 1.§ 3.П 3.4.
- •Матричний запис системи лінійних рівнянь і її розв’язування.
- •Глава 1. § 3. П.3.6.
- •Аналітична геометрія. Системи координат. Вектори. Лінійні операції над векторами
- •Поняття про лінію та її рівняння.
- •Глава 3.§1.П1.1.
- •Кут між двома прямими. Умови паралельності і перпендикулярності двох прямих.
- •Відстань від точки до прямої.
- •Глава 3.§ 3.П3.4
- •Різні види рівнянь прямої в просторі. Взаємне розміщення прямих в просторі.
- •Глава 3.§ 5.П5.1, 5.2
- •Рівняння площини, що проходить через три задані точки. Рівняння площини у відрізках на осях.
- •Глава 3.§ 4.П 4.2
- •Взаємне розміщення прямої і площини в просторі
- •Глава 3.§ 5.П 5.3.
- •Диференціальне числення. Числова послідовність. Границя числової послідовності
- •Основні теореми про границі
- •Глава 4.§ 3.П 3.7.
- •Визначні границі.
- •Глава 4.§ 4.П 4.1. - 4.3.
- •Неперервність функції на відрізку. Властивості.
- •Глава 4.§ 5.П 5.3.
- •Задачі, що приводять до поняття похідної. Означення похідної. Її геометричний та механічний зміст. Дотична до кривої.
- •Глава 5.§ 1.П 1.1, 1.2
- •Залежність між неперервністю та диференційованістю функції. Правила диференціювання. Похідні основних елементарних функцій.
- •Глава 5.§ 2.П 2.1. – 2.3.
- •Монотонність функції. Екстремум функції.
- •Означення диференціала функції однієї змінної. Правила знаходження диференціала.
- •Диференціал складеної функції. Інваріантність форми диференціала.
- •Застосування диференціала до наближених обчислень
- •Теореми Ферма і Ролля, Коші і Лагранжа.
- •Формула Тейлора.
- •Множини точок на площині
- •Функції багатьох змінних. Основні поняття та означення функції багатьох змінних. Способи задання функції. Область визначення. Графіки. Лінії рівня.
- •Похідна за напрямом. Градієнт.
- •Частинні похідні та диференціали вищих порядків.
- •Неявні функції. Похідні неявних функцій.
- •Поняття умовного екстремума.
- •Прямий метод знаходження точок умовного екстремума (метод включення).
- •Метод Лагранжа знаходження точок умовного екстремума. Метод найменших квадратів.
- •Знаходження найбільшого та найменшого значень неперервної функції на замкненій обмеженій множині
- •Інтегральне числення. Первісна. Невизначений інтеграл.
- •Інтегрування раціональних дробів, тригонометричних та ірраціональних функцій.
- •Деякі інтеграли, що не виражаються через елементарні функції
- •Глава 7.§ 1.П 1.8.
- •Означення визначеного інтеграла. Інтегральні суми.
- •Визначений інтеграл із змінною верхньою межею. Теорема Ньютона-Лейбніца.
- •Наближене обчислення визначеного інтеграла.
- •Невласні інтеграли. Поняття про подвійний інтеграл. Зведення подвійного інтеграла до повторного.
- •Диференціальні рівняння. Наближені методи розв’язування диференціальних рівнянь.
- •Однорідні диференціальні рівняння.
- •Диференціальні рівняння у повних диференціалах
- •Означення диференціальні рівняння у повних диференціалах.
- •Означення диференціальні рівняння у повних диференціалах.
- •Зниження порядку деяких диференціальних рівнянь другого порядку.
- •Ряди. Достатні ознаки збіжності для рядів з додатними членами. Використання ознак збіжності рядів з додатними членами.
- •Знакозмінні ряди. Абсолютна та умовна збіжність знакозмінних рядів.
- •Знакопочергові ряди. Ознака Лейбніца.
- •Степеневі ряди. Інтервал і радіус збіжності степеневого ряду.
- •Диференціювання та інтегрування степеневих рядів.
- •Ряди Тейлора і Маклорена.
- •Застосування рядів для наближених обчислень.
- •Диференціальне числення.
- •Аналітична геометрія. Запитання для опитування з теми: «лінії на площині і в просторі».
- •Диференціальне числення. Запитання для опитування з теми:
- •Функції багатьох змінних. Запитання для опитування з теми: «Функції багатьох змінних».
- •Інтегральне числення. Запитання для опитування з теми: «Інтеграл та його застосування».
- •Диференціальні рівняння. Запитання для опитування з теми:
- •Список рекомендованої літератури
Диференціальне числення. Запитання для опитування з теми:
«Похідна функції та її застосування».
Границя функції. Теореми про границі.
Нескінченно малі та великі. Розкриття невизначеностей.
Неперервність функції в точці. Точки розриву та їх класифікація.
Асимптоти. Їх види та рівняння.
Похідна, її геометричний та механічний зміст.
Правила диференціювання.
Застосування похідної до моделювання механічних процесів.
Застосування похідної до моделювання економічних процесів.
Залежність між неперервністю та диференційованістю функції.
Монотонність та екстремум функції.
Опуклість. Точки перегину графіка функції.
Загальна схема дослідження функції та побудови графіка функції.
Функції багатьох змінних. Запитання для опитування з теми: «Функції багатьох змінних».
Множини точок на площині та в п – вимірному просторі.
Основні поняття та означення функції багатьох змінних. Способи задання функції. Область визначення. Графіки. Лінії рівня
Частинні похідні. Повний диференціал.
Похідна за напрямом. Градієнт.
Частинні похідні та диференціали вищих порядків
Неявні функції. Похідні неявних функцій.
Екстремум функцій багатьох змінних.
Поняття умовного екстремума.
Прямий метод знаходження точок умовного екстремума. (метод включення)
Метод Лагранжа знаходження точок умовного екстремума.
Метод найменших квадратів.
Знаходження найбільшого та найменшого значень неперервної функції на замкненій обмеженій множині
Інтегральне числення. Запитання для опитування з теми: «Інтеграл та його застосування».
Метод інтегрування частинами.
Метод інтегрування заміною.
Інтегрування раціональних дробів.
Інтегрування тригонометричних функцій.
Інтегрування ірраціональних функцій
Деякі інтеграли, що не виражаються через елементарні функції.
Означення визначеного інтеграла. Інтегральні суми.
Визначений інтеграл із змінною верхньою межею. Теорема Ньютона-Лейбніца.
Наближене обчислення визначеного інтеграла.
Невласні інтеграли. Поняття про подвійний інтеграл.
Застосування інтеграла до моделювання фізичних процесів.
Застосування інтеграла до моделювання економічних процесів.
Диференціальні рівняння. Запитання для опитування з теми:
«Лінійні диференціальні рівняння».
Означення лінійного диференціального рівняння.
Суть методу розв’язування лінійного диференціального рівняння.
Приклади розв’язування лінійного диференціального рівняння.
Рівняння, які зводяться до лінійних.
Приклади розв’язування
Рівняння Бернуллі.
Приклади розв’язування
Рівняння Ріккаті.
Приклади розв’язування
