- •Програма самостійної роботи студентів спеціальності
- •5.05010201 "Обслуговування комп’ютерних систем і мереж"
- •Тема 1.1. Комплексні числа.
- •Тема 2.1. Елементи теорії матриць та визначників
- •Тема 2.2. Загальна теорія систем лінійних рівнянь
- •Тема 5.1. Основні поняття
- •Тема 5.2. Диференційованість функції багатьох змінних.
- •Тема 5.3. Дослідження функцій багатьох змінних на екстремум, умовний екстремум.
- •Тема 6.1. Невизначений інтеграл.
- •Тема 6.2. Визначений інтеграл
- •Тема 7.1. Диференціальні рівняння
- •Тема 8.1.Числові ряди.
- •Тема 8.2.Функціональні ряди.
- •Орієнтований тематичний план з тем, які винесені на самостійне вивчення
- •Глава 3. §6. П.6.1, 6.5
- •Дії над комплексними числами заданими в тригонометричній і показниковій формі
- •Глава 3. §6. П.6.1, 6.5
- •Загальний висновок про квадратні рівняння
- •Елементи лінійної алгебри. Визначники вищих порядків.
- •Глава 1.§1.П1.3
- •Обчислення визначників вищих порядків.
- •Глава 1.§1.П1.3
- •Ранг матриці.
- •Глава 1.§2.П2.4
- •Обернена матриця.
- •Глава 1. § 3. П.3.5.
- •Системи лінійних рівнянь. Умови сумісності систем лінійних рівнянь. Теорема Кронекера-Капеллі.
- •Глава 1.§ 3.П3.1, 3.6.
- •Формули Крамера.
- •Глава 1.§ 3.П3.2.
- •Метод Гауса.
- •Глава 1.§ 3.П 3.4.
- •Матричний запис системи лінійних рівнянь і її розв’язування.
- •Глава 1. § 3. П.3.6.
- •Аналітична геометрія. Системи координат. Вектори. Лінійні операції над векторами
- •Поняття про лінію та її рівняння.
- •Глава 3.§1.П1.1.
- •Кут між двома прямими. Умови паралельності і перпендикулярності двох прямих.
- •Відстань від точки до прямої.
- •Глава 3.§ 3.П3.4
- •Різні види рівнянь прямої в просторі. Взаємне розміщення прямих в просторі.
- •Глава 3.§ 5.П5.1, 5.2
- •Рівняння площини, що проходить через три задані точки. Рівняння площини у відрізках на осях.
- •Глава 3.§ 4.П 4.2
- •Взаємне розміщення прямої і площини в просторі
- •Глава 3.§ 5.П 5.3.
- •Диференціальне числення. Числова послідовність. Границя числової послідовності
- •Основні теореми про границі
- •Глава 4.§ 3.П 3.7.
- •Визначні границі.
- •Глава 4.§ 4.П 4.1. - 4.3.
- •Неперервність функції на відрізку. Властивості.
- •Глава 4.§ 5.П 5.3.
- •Задачі, що приводять до поняття похідної. Означення похідної. Її геометричний та механічний зміст. Дотична до кривої.
- •Глава 5.§ 1.П 1.1, 1.2
- •Залежність між неперервністю та диференційованістю функції. Правила диференціювання. Похідні основних елементарних функцій.
- •Глава 5.§ 2.П 2.1. – 2.3.
- •Монотонність функції. Екстремум функції.
- •Означення диференціала функції однієї змінної. Правила знаходження диференціала.
- •Диференціал складеної функції. Інваріантність форми диференціала.
- •Застосування диференціала до наближених обчислень
- •Теореми Ферма і Ролля, Коші і Лагранжа.
- •Формула Тейлора.
- •Множини точок на площині
- •Функції багатьох змінних. Основні поняття та означення функції багатьох змінних. Способи задання функції. Область визначення. Графіки. Лінії рівня.
- •Похідна за напрямом. Градієнт.
- •Частинні похідні та диференціали вищих порядків.
- •Неявні функції. Похідні неявних функцій.
- •Поняття умовного екстремума.
- •Прямий метод знаходження точок умовного екстремума (метод включення).
- •Метод Лагранжа знаходження точок умовного екстремума. Метод найменших квадратів.
- •Знаходження найбільшого та найменшого значень неперервної функції на замкненій обмеженій множині
- •Інтегральне числення. Первісна. Невизначений інтеграл.
- •Інтегрування раціональних дробів, тригонометричних та ірраціональних функцій.
- •Деякі інтеграли, що не виражаються через елементарні функції
- •Глава 7.§ 1.П 1.8.
- •Означення визначеного інтеграла. Інтегральні суми.
- •Визначений інтеграл із змінною верхньою межею. Теорема Ньютона-Лейбніца.
- •Наближене обчислення визначеного інтеграла.
- •Невласні інтеграли. Поняття про подвійний інтеграл. Зведення подвійного інтеграла до повторного.
- •Диференціальні рівняння. Наближені методи розв’язування диференціальних рівнянь.
- •Однорідні диференціальні рівняння.
- •Диференціальні рівняння у повних диференціалах
- •Означення диференціальні рівняння у повних диференціалах.
- •Означення диференціальні рівняння у повних диференціалах.
- •Зниження порядку деяких диференціальних рівнянь другого порядку.
- •Ряди. Достатні ознаки збіжності для рядів з додатними членами. Використання ознак збіжності рядів з додатними членами.
- •Знакозмінні ряди. Абсолютна та умовна збіжність знакозмінних рядів.
- •Знакопочергові ряди. Ознака Лейбніца.
- •Степеневі ряди. Інтервал і радіус збіжності степеневого ряду.
- •Диференціювання та інтегрування степеневих рядів.
- •Ряди Тейлора і Маклорена.
- •Застосування рядів для наближених обчислень.
- •Диференціальне числення.
- •Аналітична геометрія. Запитання для опитування з теми: «лінії на площині і в просторі».
- •Диференціальне числення. Запитання для опитування з теми:
- •Функції багатьох змінних. Запитання для опитування з теми: «Функції багатьох змінних».
- •Інтегральне числення. Запитання для опитування з теми: «Інтеграл та його застосування».
- •Диференціальні рівняння. Запитання для опитування з теми:
- •Список рекомендованої літератури
Глава 7.§ 1.П 1.8.
Дайте письмові відповіді на запитання.
Запишіть:
інтеграл Пуассона.
інтеграл Френеля.
інтегральний логарифм.
інтегральний косинус.
інтегральний синус.
еліптичний інтеграл.
деякі інші.
Означення визначеного інтеграла. Інтегральні суми.
План.
Інтегральні суми.
Поняття визначеного інтеграла.
Геометричний зміст визначеного інтеграла.
Властивості визначеного інтеграла.
Рекомендована література.
Вища математика: Навч.-метод.посібник для самост.вивч.дисц./ К.Г.Валєєв та ін. – К: КНЕУ, 2002. – 606с.
Розділ 7. Тема 7.2. п.7.2.2 -7.2.3.
Дайте письмові відповіді на запитання.
Сформулюйте:
Означення визначеного інтеграла.
Геометричний зміст визначеного інтеграла.
Властивості визначеного інтеграла.
Визначений інтеграл із змінною верхньою межею. Теорема Ньютона-Лейбніца.
План.
Поняття визначеного інтеграла із змінною верхньою межею.
Теорема Ньютона-Лейбніца та наслідки.
Рекомендована література.
Вища математика: Навч.-метод.посібник для самост.вивч.дисц./ К.Г.Валєєв та ін. – К: КНЕУ, 2002. – 606с.
Розділ 7. Тема 7.1. п.7.2.4
Дайте письмові відповіді на запитання.
Сформулюйте:
Поняття визначеного інтеграла із змінною верхньою межею.
Теорему Ньютона-Лейбніца та наслідки.
Наближене обчислення визначеного інтеграла.
План.
Формули прямокутників.
Формула трапецій.
Формула Сімпсона.
Рекомендована література.
Вища математика: Навч.-метод.посібник для самост.вивч.дисц./ К.Г.Валєєв та ін. – К: КНЕУ, 2002. – 606с.
Розділ 7. Тема 7.1. п.7.2.7.
Дайте письмові відповіді на запитання.
Запишіть:
Формули прямокутників.
Формула трапецій.
Формула Сімпсона.
Невласні інтеграли. Поняття про подвійний інтеграл. Зведення подвійного інтеграла до повторного.
План.
Невласні інтеграли із нескінченним проміжком інтегрування.
Обчислення невласних інтегралів від розривних (необмежених) функцій.
Поняття подвійного інтеграла.
Властивості подвійного інтеграла.
Обчислення подвійного інтеграла зведенням до повторного.
Рекомендована література.
Вища математика: Навч.-метод.посібник для самост.вивч.дисц./ К.Г.Валєєв та ін. – К: КНЕУ, 2002. – 606с.
Розділ 7. Тема 7.3. п.7.3.1 -7.3.4
Дайте письмові відповіді на запитання.
Сформулюйте:
Означення невласного інтеграла.
Поняття подвійного інтеграла.
Властивості подвійного інтеграла.
Суть обчислення подвійного інтеграла зведенням до повторного.
Диференціальні рівняння. Наближені методи розв’язування диференціальних рівнянь.
План.
Чисельний метод інтегрування Ейлера.
Екстраполяційний метод Адамса.
Метод Рунге-Кутта.
Приклади розв’язування.
Рекомендована література.
Вища математика: Навч.-метод.посібник для самост.вивч.дисц./ К.Г.Валєєв та ін. – К: КНЕУ, 2002. – 606с.
Розділ 8. Тема 8.1. п.8.1.4
Дайте письмові відповіді на запитання.
Сформулюйте суть:
Чисельного методу інтегрування Ейлера.
Екстраполяційного методу Адамса.
Методу Рунге-Кутта.
