
- •Оглавление
- •Введение.
- •1. Электрические и магнитные свойства тканей и сред организма.
- •1.1 Электропроводность биологических тканей.
- •1.2. Диэлектрические свойства биологических тканей.
- •1.3. Магнитные свойства биологических тканей.
- •1.4. Дисперсия импеданса биологических тканей.
- •1.5. Электрическая проводимость крови.
- •1.5.1. Основные факторы, влияющие на проводимость покоящейся крови. Температура.
- •Форма и размеры эритроцитов.
- •1.5.2. Электропроводность движущейся крови.
- •Основные результаты исследований.
- •Таким образом, если рассматривать пульсирующий кровеносный сосуд, то изменение его продольного электрического сопротивления происходит по следующим причинам:
- •2. Низкочастотные электромагнитные поля. Распределение токов в биологических объектах.
- •2.1.Тело человека во внешнем низкочастотном электромагнитном поле.
- •2.1.1. Переменное магнитное поле.
- •2.1.2.Импульсные магнитные поля.
- •2.1.3. Постоянное магнитное поле.
- •2.1.4. Переменное электрическое поле.
- •2.1.5. Постоянное электрическое поле.
- •2.2. Распределение токов в неоднородных биотканях.
- •3. Электромагнитные поля высокой частоты.
- •3.1. Физические механизмы действия вч полей.
- •3.2 Вч гипертермия.
- •3.2.2 Проблемы практических расчётов.
- •3.2.3. Основные расчетные соотношения.
- •Граничные условия в общепринятых обозначениях:
- •3 .3. Методы вч терапии.
- •Методы вч терапии (таблица 1)
- •4. Низкочастотные электромагнитные поля.
- •4.1. Электротравма.
- •4.2. Адекватные электромагнитные воздействия.
- •4.3. Физиологически активные инфранизкочастотные поля.
- •Заключение.
- •Приложения.
1.2. Диэлектрические свойства биологических тканей.
Диэлектрические свойства биотканей определяются присутствием в них воды, растворенных в воде макромолекул, а также компартментализацией клеточных и макроскопических структур.
Компартментализация способствует оптимальному протеканию биохимических реакций, но с другой стороны, приводит к тому, что биоткани приобретают сегнетоэлектрические (электретоподобные) свойства. Вследствие наличия заряженных компартментов биоткани обладают высоким значением e, особенно на НЧ. Заряженные слои ведут себя во внешнем поле как домены с высоким значением электрического дипольного момента и низкой характеристической частотой релаксации fx. Применительно к диполям fx соответствует максимальной частоте внешнего ЭМП, которую они способны воспроизводить своим поворотом в нем. В результате подобных поворотов достигается высокая степень экранирования внешнего ЭМП. Диапазон частот fx для различных внутриклеточных компартментов простирается от долей герца до 1-10кГц.
На границе раздела электролита и белкового матрикса биоткани образуется двойной электрический слой с большим значением электрического дипольного момента. Причём характерный размер разделённых зарядов в диэлектрике существенно больше, чем в электролите. Наличие регулярно расположенных границ раздела приводит к тому, что в объёме ткани возникает макроскопический дипольный момент (рис.1.3).
Рис. 1.3. Образование дипольной структыры на границе раздела. Слева электролит, справа белковый матрикс, стрелки указывают направление перехода электронов, L - характерная длина эквивалентного диполя р.
На более высоких частотах диэлектрические свойства определяются полярными макромолекулами, сосредоточенными как во внутри и внеклеточной жидкости, так и в двойном слое мембраны клеток.
У разных белковых молекул fx охватывает диапазон от 10 кГц до 100 МГц и зависит от размеров молекулы и вязкости среды. Существует формула для оценки характеристической fx в жидких средах заполненных диполями:
где r- характерный размер диполей; h- вязкость среды; T- температура.
Т.е. частота релаксации одной и той же молекулы в цитоплазме и в плазме крови отличаются, т.к. вязкости разные.
На СВЧ частотах основной вклад в диэлектрические свойства вносит вода, частота релаксации которой составляет 20 ГГц. Именно в воде происходят основные диэлектрические потери при действии СВЧ излучения (fx воды попадает в диапазон сантиметровых волн).
Все эти явления приводят к дисперсии – зависимости диэлектрической проницаемости от частоты. Типичный вид дисперсии приведён на рис.1.4.
.
Рис. 1.4. Дисперсия диэлектрической проницаемости скелетной мышцы.
Для биотканей принято выделять три частотные области дисперсии.
-дисперсия: её диапазон простирается до ~ 10 кГц. Эта область обусловлена наличием клеточных компартментов, релаксацией зарядов на микрососудах, фасциях, соединительных прослойках внутренних органов и других неоднородностях.
-дисперсия (104-108 Гц): обусловлена релаксацией макромолекул (как правило, белков).
-дисперсия: обусловлена релаксацией молекул воды и простирается до и более 108 Гц.
В биотканях находящихся во внешнем переменном ЭМП, возникают токи проводимости и токи смещения. По мере повышения частоты ЭМП роль токов смещения возрастает, и они становятся превалирующими при f> 106 -107 Гц. Сказанное полностью относится к различным методикам высокочастотной электротерапии: если при диатермии (F=0.5-2.0 Мгц) ткани нагреваются в основном токами проводимости, то при УВЧ терапии (F=40-60 МГц) тепловой эффект связан с токами смещения.