Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
CC.docx
Скачиваний:
4
Добавлен:
01.04.2025
Размер:
5.13 Mб
Скачать
  1. Понятие о Марковских процессах. Уравнение Колмогорова.

Ма́рковский проце́сс — случайный процесс, эволюция которого после любого заданного значения временно́го параметра   не зависит от эволюции, предшествовавшей  , при условии, что значение процесса в этот момент фиксировано («будущее» процесса не зависит от «прошлого» при известном «настоящем»; другая трактовка (Вентцель): «будущее» процесса зависит от «прошлого» лишь через «настоящее»).

Процесс Маркова — модель авторегрессии AR(1): xt1*xt-1t

Цепи Маркова

Маркова цепь (Markov Chain) - марковский процесс с дискретным временем, заданный в измеримом пространстве.

Введение

Марковские случайные процессы названы по имени выдающегося русского математика А.А.Маркова (1856-1922), впервые начавшего изучение вероятностной связи случайных величин и создавшего теорию, которую можно назвать "динамикой вероятностей". В дальнейшем основы этой теории явились исходной базой общей теории случайных процессов, а также таких важных прикладных наук, как теория диффузионных процессов, теория надежности, теория массового обслуживания и т.д. В настоящее время теория марковских процессов и ее приложения широко применяются в самых различных областях.

Благодаря сравнительной простоте и наглядности математического аппарата, высокой достоверности и точности получаемых решений, особое внимание марковские процессы приобрели у специалистов, занимающихся исследованием операций и теорией принятия оптимальных решений.

Простой пример

Прежде чем дать описание общей схемы, обратимся к простому примеру. Предположим, что речь идет о последовательных бросаниях монеты при игре "в орлянку "; монета бросается в условные моменты времени t = 0, 1, ... и на каждом шаге игрок может выиграть ±1 с одинаковой вероятностью 1/2, таким образом в момент t его суммарный выигрыш есть случайная величина ξ(t) с возможными значениями j = 0, ±1, ... При условии, что ξ(t) = k, на следующем шаге выигрыш будет уже равен ξ(t+1) = k ± 1, принимая указанные знчения j = k ± 1 c одинаковой вероятностью 1/2. Условно можно сказать, что здесь с соответствующей вероятностью происходит переход из состояния ξ(t) = k в состояние ξ(t+1) = k ± 1.

Формулы и определения

Обобщая этот пример, можно представить себе "систему" со счетным числом возможных "фазовых" состояний, которая с течением дискретного времени t = 0, 1, ... случайно переходит из состояния в состояние. Пусть ξ(t) есть ее положение в момент t в результате цепочки случайных переходов

ξ(0) - ξ(1) - ... - ξ(t) - ... ... (1)

Формально обозначим все возможные состояния целыми i = 0, ±1, ... Предположим, что при известном состоянии ξ(t) = k на следующем шаге система переходит в состояние ξ(t+1) = j с условной вероятностью

pkj = P(ξ(t+1) = j|ξ(t) = k) ... (2)

независимо от ее поведения в прошлом, точнее, независимо от цепочки переходов (1) до момента t:

P(ξ(t+1) = j|ξ(0) = i, ..., ξ(t) = k) = P(ξ(t+1) = j|ξ(t) = k) при всех t, k, j ... (3) - марковское свойство.

Такую вероятностную схему называют однородной цепью Маркова со счетным числом состояний - ее однородность состоит в том, что определенные в (2) переходные вероятности pkj, ∑j pkj = 1, k = 0, ±1, ..., не зависят от времени, т.е. P(ξ(t+1) = j|ξ(t) = k) = Pij матрица вероятностей перехода за один шаг не зависит от n. Ясно, что Pij - квадратная матрица с неотрицательными элементами и единичными суммами по строкам. Такая матрица (конечная или бесконечная) называется стохастической матрицей. Любая стохастическая матрица может служить матрицей переходных вероятностей.

Уравнение Колмогорова-Чепмена относится к классу рекуррентных соотношений, позволяющих вычислить вероятность состояний марковского случайного процесса на любом шаге (этапе) при наличии информации о предшествующих состояниях.

Уравнение Колмогорова — Чепмена для однопараметрического семейства непрерывных линейных операторов   в топологическом векторном пространстве выражаетполугрупповое свойство:

Чаще всего этот термин используется в теории однородных марковских случайных процессов, где   — оператор, преобразующий распределение вероятностей в начальный момент времени в распределение вероятности в момент времени   ( ).

Для неоднородных процессов рассматриваются двухпараметрические семейства операторов  , преобразующих распределение вероятностей в момент времени  в распределение вероятности в момент времени   Для них уравнение Колмогорова—Чепмена имеет вид

Для систем с дискретным временем параметры   принимают натуральные значения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]