
- •1. Основные понятия и определения. Операционные системы как средство распределения и управления ресурсами.
- •2. Архитектура unix. Основные стандарты.
- •3. Модель системы unix.
- •4. Ядро системы. Внутренняя структура ядра.
- •5. Файловая подсистема
- •6. Подсистема ввода/вывода
- •7. Подсистема управления процессами
- •8. Работа в операционной системе unix
- •9 Файлы и файловая подсистема. Типы файлов.
- •11 Владельцы файлов. Права доступа к файлу. Дополнительные атрибуты файла.
- •12 Командный интерпритатор Shell. Синтаксис языка Bourn Shell. Общий синтаксис скрипта.
- •13 Основные утилиты unix
- •14 Подсистема управления процессом. Структура данных процесса, состояния процесса.
- •15Типы процессов: системные процессы, демоны, прикладные процессы.
- •16.Жизненый путь процесса. Инфраструктура процесса ос unix.
- •21. Планирование и управление процессами. Основные принципы и механизмы, обработка прерываний таймера, алармы, создание процесса.
- •22. Сигналы. Управление сигналами: отправление сигнала, доставка и обработка сигнала.
- •23. Взаимодействие между процессами. Средства межпроцессного взаимодействия.
- •24. Настройка командного интерпретатора. Работа с командным интерпретатором. Способы установки командного интерпретатора.
- •26. Файловая подсистема. Базовая файловая система System V . Основные компоненты файловой системы s5fs, массив индексных дескрипторов. Достоинства, недостатки.
- •27. Файловая система ffs. Основные изменения.
- •28. Архитектура виртуальной файловой системы. Монтирование файловой системы. Трансляция имен. Системные вызовы, требующие трансляции имени.
- •33. Блочные устройства
- •35. Трансляторы. Основные понятия и определения
- •36. Общие особенности языков программирования и трансляторов
- •37. Обобщённая структура компилятора, интерпритатора.
- •38. Фазы процесса трансляции и компиляции.
- •Обобщенная схема синтаксического анализатора
- •41. Варианты взаимодействия блоков транслятора. Особенности.
- •42. Многопроходная организация взаимодействия блоков транслятора. Достоинства и недостатки.
- •43. Однопроходная организация взаимодействия блоков транслятора. Достоинства и недостатки.
- •Наиболее широкое применение при разработке трансляторов нашли кс-грамматики и порождаемые ими кс языки. Способы записи синтаксиса языка
- •Метаязык Хомского
- •46 Метаязык Хомского-Щутценберже
- •49. Распознаватели.
- •50. Организация лексического анализа. Назначение и необходимость фазы
- •55. Грамматики с ограничениями на правила.
- •56.Устройства управления с конечной памятью.
- •57. Методы лексического анализа
- •58. Организация прямого л/а
- •59. Общие принципы организации синтаксического разбора. Назначение, классификация методов синтаксического разбора.
- •60. Методы синтаксического разбора.
- •Последовательность разбора.
- •Использование просмотра вперед.
- •Разработка программы по таблице переходов амп
- •64 Организация автоматов с магазинной памятью.
- •65 Распознаватель скобочных выражений.
- •67 Основные команды Linux. Ввод и вывод данных.
24. Настройка командного интерпретатора. Работа с командным интерпретатором. Способы установки командного интерпретатора.
Че его настраивать? Командный интерпретатор – базовая пользовательская среда. Реализует диалог с пользователем. Прописан в последнем поле учетной записи в /etc/passwd.
26. Файловая подсистема. Базовая файловая система System V . Основные компоненты файловой системы s5fs, массив индексных дескрипторов. Достоинства, недостатки.
большинство данных в операционной системе UNIX хранится в файлах, организованных в виде дерева и расположенных на некотором носителе данных. Обычно это локальный (т. е. расположенный на том же компьютере, что и сама операционная система) жесткий диск, хотя специальный тип файловой системы — NFS (Network File System) обеспечивает хранение файлов на удаленном компьютере. Файловая система также может располагаться на CD-ROM, дискетах и других типах носителей, однако для простоты изложения сначала мы рассмотрим традиционную файловую систему UNIX, расположенную на обычном жестком диске компьютера.
Исконной файловой системой UNIX System V является s5fs.
Базовая файловая система System V
Каждый жесткий диск состоит из одной или нескольких логических частей, называемых разделами (partitions). Расположение и размер раздела определяются при форматировании диска. В UNIX разделы выступают в качестве независимых устройств, доступ к которым осуществляется как к различным носителям данных.
Например, диск может состоять из четырех разделов, каждый из которых содержит свою файловую систему. Заметим, что в разделе может располагаться только одна файловая система, которая не может занимать несколько разделов. В другой конфигурации диск может состоять только из одного раздела, позволяя создание весьма емких файловых систем.Файловая система s5fs занимает раздел диска и состоит из трех основных компонентов:
1) Суперблок (superblock). Содержит общую информацию о файловой системе, например, об ее архитектуре, общем числе блоков и индексных дескрипторов, или метаданных (inode). Суперблок считывается в память при монтировании файловой системы и находится там до ее отключения (размонтирования). Суперблок содержит следующую информацию: О Тип файловой системы (s_type)
П Размер файловой системы в логических блоках, включая сам суперблок, ilist и блоки хранения данных (s_f size) Cl Размер массива индексных дескрипторов (s_isize) П Число свободных блоков, доступных для размещения (s_tf гее) П Число свободных inode, доступных для размещения (s_tinode)
Флаги (флаг модификации s_fmod, флаг режима монтирования
s_fronly)
О Размер логического блока (512, 1024, 2048) О Список номеров свободных inode О Список адресов свободных блоков
2) Массив индексных дескрипторов (ilist). Содержит метаданные всех файлов файловой системы. Индексный дескриптор содержит статусную информацию о файле и указывает на расположение данных этого файла. Ядро обращается к inode по индексу в массиве ilist. Один inode является корневым (root) inode файловой системы, через него обеспечивается доступ к структуре каталогов и файлов после монтирования файловой системы. Размер массива ilist является фиксированным и задается при создании файловой системы. Таким образом, файловая система s5fs имеет ограничение по числу файлов, которые могут храниться в ней, независимо от размера этих файлов.
3) Блоки хранения данных. Данные обычных файлов и каталогов хранятся в блоках. Обработка файла осуществляется через inode, содержащего ссылки на блоки данных. Блоки хранения данных занимают большую часть дискового раздела, и их число определяет максимальный суммарный объем файлов данной файловой системы. Размер блока кратен 512 байтам, например файловая система S51K SCO UNIX использует размер блока в 1 Кбайт (отсюда и название).
Индексные дескрипторы
Индексный дескриптор, или inode, содержит информацию о файле, необходимую для обработки данных, т. е. метаданные файла. Каждый файл ассоциирован с одним inode, хотя может иметь несколько имен в файловой системе, каждое из которых указывает на один и тот же inode. Индексный дескриптор содержит информацию о расположении данных файла. Поскольку дисковые блоки хранения данных файла в общем случае располагаются не последовательно, inode должен хранить физические адреса всех блоков, принадлежащих данному файлу. В индексном дескрипторе эта информация хранится в виде массива, каждый элемент которого содержит физический адрес дискового блока, а индексом массива является номер логического блока файла. Массив имеет фиксированный размер и состоит из 13 элементов. При этом первые 10 элементов адресуют непосредственно блоки хранения данных файла. Одиннадцатый элемент адресует блок, в свою очередь содержащий адреса блоков хранения данных. Двенадцатый элемент указывает на дисковый блок, также хранящий адреса блоков, каждый из который адресует блок хранения данных файла. И, наконец, тринадцатый элемент используется для тройной косвенной адресации, когда для нахождения адреса блока хранения данных файла используются три дополнительных блока.
Недостатки и ограничения
Файловая систем s5fs привлекательна благодаря своей простоте. Однако обратной стороной медали является низкая надежность и производительность.
С точки зрения надежности слабым местом этой файловой системы является суперблок. Суперблок несет основную информацию о файловой системе в целом, и при его повреждении файловая система не может использоваться. Поскольку в файловой системе s5fs суперблок хранится в единственном варианте, вероятность возникновения ошибок достаточно велика.
Относительно низкая производительность связана с размещением компонентов файловой системы на диске. Метаданные файлов располагаются в начале файловой системы, а далее следуют блоки хранения данных. При работе с файлом, происходит обращение как к его метаданным, так и к дисковым блокам, содержащим его данные. Поскольку эти структуры данных могут быть значительно разнесены в дисковом пространстве, необходимость постоянного перемещения головки диска увеличивает время доступа и, как следствие, уменьшает производительность файловой системы в целом. К этому же эффекту приводит фрагментация файловой системы, поскольку отдельные блоки файла оказываются разбросанными по всему разделу диска.
Использование дискового пространства также не оптимально. Для увеличения производительности файловой системы более предпочтительным является использование блоков больших размеров. Это позволяет считывать большее количество данных за одну операцию ввода/вывода. Так, например, в UNIX SVR2 размер блока составлял 512 байтов, а в SVR3 — уже 1024 байтов. Однако поскольку блок может использоваться только одним файлом, увеличение размера блока приводит к увеличению неиспользуемого дискового пространства за счет частичного заполнения последнего блока файла. В среднем для каждого файла теряется половина блока.
Массив inode имеет фиксированный размер, задаваемый при создании файловой системы. Этот размер накладывает ограничение на максимальное число файлов, которые могут существовать в файловой системе. Расположение границы между метаданными файлов и их данными (блоками хранения данных) может оказаться неоптимальным, приводящим либо к нехватке inode, если файловая система хранит файлы небольшого размера, Либо к нехватке дисковых блоков для хранения файлов большого размера. Поскольку динамически изменить эту границу невозможно, всегда останется неиспользованное дисковое пространство либо в массиве inode, либо в блоках хранения данных.
Наконец, ограничения, накладываемые на длину имени файла (14 символов) и общее максимальное число inode (65 535), также являются слишком жесткими.